ترغب بنشر مسار تعليمي؟ اضغط هنا

Gravitational Waves detection and spectroscopy with a Double-slit Quantum Eraser

178   0   0.0 ( 0 )
 نشر من قبل Fabrizio Tamburini
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose the use of heralded photons to detect Gravitational Waves (GWs). Heralded photons are those photons that, produced during a parametric downconversion process, are labelled by the detection and counting of coincidences of their correlated or entangled twins and therefore can be discriminated from the background noise, independently of the type of correlation/entanglement used in the setup. Without losing any generality, we illustrate our proposal with a gedankenexperiment, in which the presence of a gravitational wave causes a relative rotation of the reference frames associated to the double-slit and the test polarizer, respectively, of a Walborns quantum eraser cite{wal02}. In this thought experiment, the GW is revealed by the detection of heralded photons in the dark fringes of the recovered interference pattern by the quantum eraser. Other types of entanglement, such as momentum-space or energy-time, could be used to obtain heralded photons to be used in the future with high-frequency GW interferometric detectors when enough bright sources of correlated photons will be available.



قيم البحث

اقرأ أيضاً

170 - Joseph Samuel 2017
The double slit experiment is iconic and widely used in classrooms to demonstrate the fundamental mystery of quantum physics. The puzzling feature is that the probability of an electron arriving at the detector when both slits are open is not the sum of the probabilities when the slits are open separately. The superposition principle of quantum mechanics tells us to add amplitudes rather than probabilities and this results in interference. This experiment defies our classical intuition that the probabilities of exclusive events add. In understanding the emergence of the classical world from the quantum one, there have been suggestions by Feynman, Diosi and Penrose that gravity is responsible for suppressing interference. This idea has been pursued in many different forms ever since, predominantly within Newtonian approaches to gravity. In this paper, we propose and theoretically analyse two `gedanken or thought experiments which lend strong support to the idea that gravity is responsible for decoherence. The first makes the point that thermal radiation can suppress interference. The second shows that in an accelerating frame, Unruh radiation plays the same role. Invoking the Einstein equivalence principle to relate acceleration to gravity, we support the view that gravity is responsible for decoherence.
Motivated by the next generation of gravitational wave (GW) detectors, we study the wave mechanics of a twisted light beam in the GW perturbed spacetime. We found a new gravitational dipole interaction of photons and gravitational waves. Physically, this interaction is due to coupling between the angular momentum of twisted light and the GW polarizations. We demonstrate that for the higher-order Laguerre-Gauss (LG) modes, this coupling effect makes photons undergoing dipole transitions between different orbital-angular-momentum(OAM) eigenstates, and leads to some measurable optical features in the 2-D intensity pattern. It offers an alternative way to realize precision measurements of the gravitational waves, and enables us to extract more information about the physical properties of gravitational waves than the current interferometry. With a well-designed optical setup, this dipole interaction is expected to be justified in laboratories.
It is well known that in a two-slit interference experiment, if the information, on which of the two paths the particle followed, is stored in a quantum path detector, the interference is destroyed. However, in a setup where this path information is erased, the interference can reappear. Such a setup is known as a quantum eraser. A generalization of quantum eraser to a three-slit interference is theoretically analyzed. It is shown that three complementary interference patterns can arise out of the quantum erasing process.
82 - F.Fucito 2000
In this talk I review recent progresses in the detection of scalar gravitational waves. Furthermore, in the framework of the Jordan-Brans-Dicke theory, I compute the signal to noise ratio for a resonant mass detector of spherical shape and for binary sources and collapsing stars. Finally I compare these results with those obtained from laser interferometers and from Einsteinian gravity.
We review matter wave and clock comparison tests of the gravitational redshift. To elucidate their relationship to tests of the universality of free fall (UFF), we define scenarios wherein redshift violations are coupled to violations of UFF (type II ), or independent of UFF violations (type III), respectively. Clock comparisons and atom interferometers are sensitive to similar effects in type II and precisely the same effects in type III scenarios, although type III violations remain poorly constrained. Finally, we describe the Geodesic Explorer, a conceptual spaceborne atom interferometer that will test the gravitational redshift with an accuracy 5 orders of magnitude better than current terrestrial redshift experiments for type II scenarios and 12 orders of magnitude better for type III.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا