ﻻ يوجد ملخص باللغة العربية
In this talk I review recent progresses in the detection of scalar gravitational waves. Furthermore, in the framework of the Jordan-Brans-Dicke theory, I compute the signal to noise ratio for a resonant mass detector of spherical shape and for binary sources and collapsing stars. Finally I compare these results with those obtained from laser interferometers and from Einsteinian gravity.
The direct detection of gravitational waves crowns decades of efforts in the modelling of sources and of increasing detectors sensitivity. With future third-generation Earth-based detectors or space-based observatories, gravitational-wave astronomy w
Gravitationally coupled scalar fields, originally introduced by Jordan, Brans and Dicke to account for a non constant gravitational coupling, are a prediction of many non-Einsteinian theories of gravity not excluding perturbative formulations of Stri
The gauge dependence of the scalar induced gravitational waves (SIGWs) generated at the second order imposes a challenge to the discussion of the secondary gravitational waves generated by scalar perturbations. We provide a general formula that is va
This paper provides a pedagogical introduction to the physics of extra dimensions focussing on the ADD, Randall-Sundrum and DGP models. In each of these models, the familiar particles and fields of the standard model are assumed to be confined to a f
An additional scalar degree of freedom for a gravitational wave is often predicted in theories of gravity beyond general relativity and can be used for a model-agnostic test of gravity. In this letter, we report the first direct search for the scalar