ﻻ يوجد ملخص باللغة العربية
It is well known that in a two-slit interference experiment, if the information, on which of the two paths the particle followed, is stored in a quantum path detector, the interference is destroyed. However, in a setup where this path information is erased, the interference can reappear. Such a setup is known as a quantum eraser. A generalization of quantum eraser to a three-slit interference is theoretically analyzed. It is shown that three complementary interference patterns can arise out of the quantum erasing process.
The issue of interference and which-way information is addressed in the context of 3-slit interference experiments. A new path distinguishability ${mathcal D_Q}$ is introduced, based on Unambiguous Quantum State Discrimination (UQSD). An inequality c
A three-slit ghost interference experiment with entangled photons is theoretically analyzed using wave-packet dynamics. A non-local duality relation is derived which connects the path distinguishability of one photon to the interference visibility of the other.
The validity of the superposition principle and of Borns rule are well-accepted tenants of quantum mechanics. Surprisingly, it has recently been predicted that the intensity pattern formed in a three-slit experiment is seemingly in contradiction with
We study the dynamical entanglement distribution in a multipartite system. The initial state is a maximally entangled two level atom with a single photon field. Next a sequence of atoms are sent, one at the time, and interact with the field. We show
The measurable degree of entanglement from a quantum dot via the biexciton-exciton cascade depends crucially on the bright exciton fine-structure splitting and on the detection time resolution. Here, we propose an optical approach with fast rotating