ﻻ يوجد ملخص باللغة العربية
Motivated by the next generation of gravitational wave (GW) detectors, we study the wave mechanics of a twisted light beam in the GW perturbed spacetime. We found a new gravitational dipole interaction of photons and gravitational waves. Physically, this interaction is due to coupling between the angular momentum of twisted light and the GW polarizations. We demonstrate that for the higher-order Laguerre-Gauss (LG) modes, this coupling effect makes photons undergoing dipole transitions between different orbital-angular-momentum(OAM) eigenstates, and leads to some measurable optical features in the 2-D intensity pattern. It offers an alternative way to realize precision measurements of the gravitational waves, and enables us to extract more information about the physical properties of gravitational waves than the current interferometry. With a well-designed optical setup, this dipole interaction is expected to be justified in laboratories.
The direct detection of gravitational waves with the next generation detectors, like Advanced LIGO, provides the opportunity to measure deviations from the predictions of General Relativity. One such departure would be the existence of alternative po
LIGO and Virgo have initiated the era of gravitational-wave (GW) astronomy; but in order to fully explore GW frequency spectrum, we must turn our attention to innovative techniques for GW detection. One such approach is to use binary systems as dynam
We propose a tunable resonant sensor to detect gravitational waves in the frequency range of 50-300 kHz using optically trapped and cooled dielectric microspheres or micro-discs. The technique we describe can exceed the sensitivity of laser-based gra
Direct detection of gravitational waves is opening a new window onto our universe. Here, we study the sensitivity to continuous-wave strain fields of a kg-scale optomechanical system formed by the acoustic motion of superfluid helium-4 parametrically
In the era of second generation ground-based gravitational wave detectors, short gamma-ray bursts (GRBs) will be among the most promising astrophysical events for joint electromagnetic and gravitational wave observation. A targeted search for gravita