ترغب بنشر مسار تعليمي؟ اضغط هنا

A stochastic-Lagrangian particle system for the Navier-Stokes equations

289   0   0.0 ( 0 )
 نشر من قبل Gautam Iyer
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper is based on a formulation of the Navier-Stokes equations developed by P. Constantin and the first author (texttt{arxiv:math.PR/0511067}, to appear), where the velocity field of a viscous incompressible fluid is written as the expected value of a stochastic process. In this paper, we take $N$ copies of the above process (each based on independent Wiener processes), and replace the expected value with $frac{1}{N}$ times the sum over these $N$ copies. (We remark that our formulation requires one to keep track of $N$ stochastic flows of diffeomorphisms, and not just the motion of $N$ particles.) We prove that in two dimensions, this system of interacting diffeomorphisms has (time) global solutions with initial data in the space $holderspace{1}{alpha}$ which consists of differentiable functions whose first derivative is $alpha$ Holder continuous (see Section ref{sGexist} for the precise definition). Further, we show that as $N to infty$ the system converges to the solution of Navier-Stokes equations on any finite interval $[0,T]$. However for fixed $N$, we prove that this system retains roughly $O(frac{1}{N})$ times its original energy as $t to infty$. Hence the limit $N to infty$ and $Tto infty$ do not commute. For general flows, we only provide a lower bound to this effect. In the special case of shear flows, we compute the behaviour as $t to infty$ explicitly.



قيم البحث

اقرأ أيضاً

The averaging principle is established for the slow component and the fast component being two dimensional stochastic Navier-Stokes equations and stochastic reaction-diffusion equations, respectively. The classical Khasminskii approach based on time discretization is used for the proof of the slow component strong convergence to the solution of the corresponding averaged equation under some suitable conditions. Meanwhile, some powerful techniques are used to overcome the difficulties caused by the nonlinear term and to release the regularity of the initial value.
We introduce a rough perturbation of the Navier-Stokes system and justify its physical relevance from balance of momentum and conservation of circulation in the inviscid limit. We present a framework for a well-posedness analysis of the system. In pa rticular, we define an intrinsic notion of solution based on ideas from the rough path theory and study the system in an equivalent vorticity formulation. In two space dimensions, we prove that well-posedness and enstrophy balance holds. Moreover, we derive rough path continuity of the equation, which yields a Wong-Zakai result for Brownian driving paths, and show that for a large class of driving signals, the system generates a continuous random dynamical system. In dimension three, the noise is not enstrophy balanced, and we establish the existence of local in time solutions.
We reduce the construction of a weak solution of the Cauchy problem for the Navier-Stokes system to the construction of a solution to a stochastic problem. Namely, we construct diffusion processes which allow us to obtain a probabilistic representati on of a weak (in distributional sense) solution to the Cauchy problem for the Navier- Stokes system.
A dynamic procedure for the Lagrangian Averaged Navier-Stokes-$alpha$ (LANS-$alpha$) equations is developed where the variation in the parameter $alpha$ in the direction of anisotropy is determined in a self-consistent way from data contained in the simulation itself. The dynamic model is initially tested in forced and decaying isotropic turbulent flows where $alpha$ is constant in space but it is allowed to vary in time. It is observed that by using the dynamic LANS-$alpha$ procedure a more accurate simulation of the isotropic homogeneous turbulence is achieved. The energy spectra and the total kinetic energy decay are captured more accurately as compared with the LANS-$alpha$ simulations using a fixed $alpha$. In order to evaluate the applicability of the dynamic LANS-$alpha$ model in anisotropic turbulence, a priori test of a turbulent channel flow is performed. It is found that the parameter $alpha$ changes in the wall normal direction. Near a solid wall, the length scale $alpha$ is seen to depend on the distance from the wall with a vanishing value at the wall. On the other hand, away from the wall, where the turbulence is more isotropic, $alpha$ approaches an almost constant value. Furthermore, the behavior of the subgrid scale stresses in the near wall region is captured accurately by the dynamic LANS-$alpha$ model. The dynamic LANS-$alpha$ model has the potential to extend the applicability of the LANS-$alpha$ equations to more complicated anisotropic flows.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا