ﻻ يوجد ملخص باللغة العربية
A dynamic procedure for the Lagrangian Averaged Navier-Stokes-$alpha$ (LANS-$alpha$) equations is developed where the variation in the parameter $alpha$ in the direction of anisotropy is determined in a self-consistent way from data contained in the simulation itself. The dynamic model is initially tested in forced and decaying isotropic turbulent flows where $alpha$ is constant in space but it is allowed to vary in time. It is observed that by using the dynamic LANS-$alpha$ procedure a more accurate simulation of the isotropic homogeneous turbulence is achieved. The energy spectra and the total kinetic energy decay are captured more accurately as compared with the LANS-$alpha$ simulations using a fixed $alpha$. In order to evaluate the applicability of the dynamic LANS-$alpha$ model in anisotropic turbulence, a priori test of a turbulent channel flow is performed. It is found that the parameter $alpha$ changes in the wall normal direction. Near a solid wall, the length scale $alpha$ is seen to depend on the distance from the wall with a vanishing value at the wall. On the other hand, away from the wall, where the turbulence is more isotropic, $alpha$ approaches an almost constant value. Furthermore, the behavior of the subgrid scale stresses in the near wall region is captured accurately by the dynamic LANS-$alpha$ model. The dynamic LANS-$alpha$ model has the potential to extend the applicability of the LANS-$alpha$ equations to more complicated anisotropic flows.
This paper has been withdrawn by the authors for adding some results.
We study a correspondence between the multifractal model of turbulence and the Navier-Stokes equations in $d$ spatial dimensions by comparing their respective dissipation length scales. In Kolmogorovs 1941 theory the key parameter $h$, which is an ex
We determine how the differences in the treatment of the subfilter-scale physics affect the properties of the flow for three closely related regularizations of Navier-Stokes. The consequences on the applicability of the regularizations as SGS models
We introduce a model of interacting singularities of Navier-Stokes, named pin,cons. They follow a Hamiltonian dynamics, obtained by the condition that the velocity field around these singularities obeys locally Navier-Stokes equations. This model can
We present a fully conservative, skew-symmetric finite difference scheme on transformed grids. The skew-symmetry preserves the kinetic energy by first principles, simultaneously avoiding a central instability mechanism and numerical damping. In contr