ﻻ يوجد ملخص باللغة العربية
We reduce the construction of a weak solution of the Cauchy problem for the Navier-Stokes system to the construction of a solution to a stochastic problem. Namely, we construct diffusion processes which allow us to obtain a probabilistic representation of a weak (in distributional sense) solution to the Cauchy problem for the Navier- Stokes system.
This paper is based on a formulation of the Navier-Stokes equations developed by P. Constantin and the first author (texttt{arxiv:math.PR/0511067}, to appear), where the velocity field of a viscous incompressible fluid is written as the expected valu
We introduce a rough perturbation of the Navier-Stokes system and justify its physical relevance from balance of momentum and conservation of circulation in the inviscid limit. We present a framework for a well-posedness analysis of the system. In pa
This paper investigates sufficient conditions for a Feynman-Kac functional up to an exit time to be the generalized viscosity solution of a Dirichlet problem. The key ingredient is to find out the continuity of exit operator under Skorokhod topology,
In this paper, we are concerned with the local-in-time well-posedness of a fluid-kinetic model in which the BGK model with density dependent collision frequency is coupled with the inhomogeneous Navier-Stokes equation through drag forces. To the best
This paper investigates an incompressible chemotaxis-Navier-Stokes system with slow $p$-Laplacian diffusion begin{eqnarray} left{begin{array}{lll} n_t+ucdot abla n= ablacdot(| abla n|^{p-2} abla n)- ablacdot(nchi(c) abla c),& xinOmega, t>0, c_t+ucdot