ﻻ يوجد ملخص باللغة العربية
The averaging principle is established for the slow component and the fast component being two dimensional stochastic Navier-Stokes equations and stochastic reaction-diffusion equations, respectively. The classical Khasminskii approach based on time discretization is used for the proof of the slow component strong convergence to the solution of the corresponding averaged equation under some suitable conditions. Meanwhile, some powerful techniques are used to overcome the difficulties caused by the nonlinear term and to release the regularity of the initial value.
This work is devoted to averaging principle of a two-time-scale stochastic partial differential equation on a bounded interval $[0, l]$, where both the fast and slow components are directly perturbed by additive noises. Under some regular conditions
This paper is based on a formulation of the Navier-Stokes equations developed by P. Constantin and the first author (texttt{arxiv:math.PR/0511067}, to appear), where the velocity field of a viscous incompressible fluid is written as the expected valu
This article deals with the weak errors for averaging principle for a stochastic wave equation in a bounded interval $[0,L]$, perturbed by a oscillating term arising as the solution of a stochastic reaction-diffusion equation evolving with respect to
This paper is devoted to proving the strong averaging principle for slow-fast stochastic partial differential equations with locally monotone coefficients, where the slow component is a stochastic partial differential equations with locally monotone
By using the technique of the Zvonkins transformation and the classical Khasminkiis time discretization method, we prove the averaging principle for slow-fast stochastic partial differential equations with bounded and H{o}lder continuous drift coeffi