ترغب بنشر مسار تعليمي؟ اضغط هنا

The frustrated Ising model on the body-centered cubic lattice

162   0   0.0 ( 0 )
 نشر من قبل Mateus Schmidt
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent results for the Ising model with first ($J_1$) and second ($J_2$) neighbour interactions on the body-centered cubic (bcc) lattice suggest that this model can host signatures of strong frustration, including Schottky anomalies and residual entropy, as well as, a spin-liquid-like phase [E. Jurv{c}iv{s}inova and M. Jurv{c}iv{s}in, Phys. Rev. B, 101 214443 (2020)]. Motivated by these findings, we investigate phase transitions and thermodynamics of this model using a cluster mean-field approach. In this lattice, tuning $g=J_2/J_1$ leads to a ground-state transition between antiferromagnetic (AF) and superantiferromagnetic (SAF) phases at the frustration maximum $g=2/3$. Although the ordering temperature is reduced as $g to 2/3$, our findings suggest the absence of any Schottky anomaly and residual entropy, in good agreement with Monte Carlo simulations. We also find a direct transition between AF and SAF phases, ruling out the presence of the spin-liquid-like state. Furthermore, the cluster mean-field outcomes support a scenario with only continuous phase transitions between the paramagnetic state and the low-temperature long-range orders. Therefore, our results indicate the absence of strong frustration effects in the thermodynamics and in the nature of phase transitions, which can be ascribed to the higher dimensionality of the bcc lattice.



قيم البحث

اقرأ أيضاً

We investigate the role of a transverse field on the Ising square antiferromagnet with first-($J_1$) and second-($J_2$) neighbor interactions. Using a cluster mean-field approach, we provide a telltale characterization of the frustration effects on t he phase boundaries and entropy accumulation process emerging from the interplay between quantum and thermal fluctuations. We found that the paramagnetic (PM) and antiferromagnetic phases are separated by continuous phase transitions. On the other hand, continuous and discontinuous phase transitions, as well as tricriticality, are observed in the phase boundaries between PM and superantiferromagnetic phases. A rich scenario arises when a discontinuous phase transition occurs in the classical limit while quantum fluctuations recover criticality. We also find that the entropy accumulation process predicted to occur at temperatures close to the quantum critical point can be enhanced by frustration. Our results provide a description for the phase boundaries and entropy behavior that can help to identify the ratio $J_2/J_1$ in possible experimental realizations of the quantum $J_1$-$J_2$ Ising antiferromagnet.
In this paper the elementary moves of the BFACF-algorithm for lattice polygons are generalised to elementary moves of BFACF-style algorithms for lattice polygons in the body-centred (BCC) and face-centred (FCC) cubic lattices. We prove that the ergod icity classes of these new elementary moves coincide with the knot types of unrooted polygons in the BCC and FCC lattices and so expand a similar result for the cubic lattice. Implementations of these algorithms for knotted polygons using the GAS algorithm produce estimates of the minimal length of knotted polygons in the BCC and FCC lattices.
We investigate the spin $S=1/2$ Heisenberg model on the body centered cubic lattice in the presence of ferromagnetic and antiferromagnetic nearest-neighbor $J_{1}$, second-neighbor $J_{2}$, and third-neighbor $J_{3}$ exchange interactions. The classi cal ground state phase diagram obtained by a Luttinger-Tisza analysis is shown to host six different (noncollinear) helimagnetic orders in addition to ferromagnetic, Neel, stripe and planar antiferromagnetic orders. Employing the pseudofermion functional renormalization group (PFFRG) method for quantum spins ($S=1/2$) we find an extended nonmagnetic region, and significant shifts to the classical phase boundaries and helimagnetic pitch vectors caused by quantum fluctuations while no new long-range dipolar magnetic orders are stabilized. The nonmagnetic phase is found to disappear for $S=1$. We calculate the magnetic ordering temperatures from PFFRG and quantum Monte Carlo methods, and make comparisons to available data
In this paper and its sequel, we construct topologically invariant defects in two-dimensional classical lattice models and quantum spin chains. We show how defect lines commute with the transfer matrix/Hamiltonian when they obey the defect commutatio n relations, cousins of the Yang-Baxter equation. These relations and their solutions can be extended to allow defect lines to branch and fuse, again with properties depending only on topology. In this part I, we focus on the simplest example, the Ising model. We define lattice spin-flip and duality defects and their branching, and prove they are topological. One useful consequence is a simple implementation of Kramers-Wannier duality on the torus and higher genus surfaces by using the fusion of duality defects. We use these topological defects to do simple calculations that yield exact properties of the conformal field theory describing the continuum limit. For example, the shift in momentum quantization with duality-twisted boundary conditions yields the conformal spin 1/16 of the chiral spin field. Even more strikingly, we derive the modular transformation matrices explicitly and exactly.
220 - F. Igloi 2008
We consider the Ising model on the Bethe lattice with aperiodic modulation of the couplings, which has been studied numerically in Phys. Rev. E 77, 041113 (2008). Here we present a relevance-irrelevance criterion and solve the critical behavior exact ly for marginal aperiodic sequences. We present analytical formulae for the continuously varying critical exponents and discuss a relationship with the (surface) critical behavior of the aperiodic quantum Ising chain.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا