ﻻ يوجد ملخص باللغة العربية
The main result of this paper is the extension of the Schur-Horn Theorem to infinite sequences: For two nonincreasing nonsummable sequences x and y that converge to 0, there exists a compact operator A with eigenvalue list y and diagonal sequence x if and only if y majorizes x (sum_{j=1}^n x_j le sum_{j=1}^n y_j for all n) if and only if x = Qy for some orthostochastic matrix Q. The similar result requiring equality of the infinite series in the case that the sequences x and y are summable is an extension of a recent theorem by Arveson and Kadison. Our proof depends on the construction and analysis of an infinite product of T-transform matrices. Further results on majorization for infinite sequences providing intermediate sequences generalize known results from the finite case. Majorization properties and invariance under various classes of stochastic matrices are then used to characterize arithmetic mean closed operator ideals.
We prove an index theorem for the quotient module of a monomial ideal. We obtain this result by resolving the monomial ideal by a sequence of Bergman space like essentially normal Hilbert modules.
We prove an infinite Ramsey theorem for noncommutative graphs realized as unital self-adjoint subspaces of linear operators acting on an infinite dimensional Hilbert space. Specifically, we prove that if V is such a subspace, then provided there is n
We show that the set of Schur idempotents with hyperreflexive range is a Boolean lattice which contains all contractions. We establish a preservation result for sums which implies that the weak* closed span of a hyperreflexive and a ternary masa-bimo
Recently Blecher and Kashyap have generalized the notion of W* modules over von Neumann algebras to the setting where the operator algebras are sigma- weakly closed algebras of operators on a Hilbert space. They call these modules weak* rigged module
The residual finite-dimensionality of a $mathrm{C}^*$-algebra is known to be encoded in a topological property of its space of representations, stating that finite-dimensional representations should be dense therein. We extend this paradigm to genera