ﻻ يوجد ملخص باللغة العربية
We prove an infinite Ramsey theorem for noncommutative graphs realized as unital self-adjoint subspaces of linear operators acting on an infinite dimensional Hilbert space. Specifically, we prove that if V is such a subspace, then provided there is no obvious obstruction, there is an infinite rank projection P with the property that the compression PVP is either maximal or minimal in a certain natural sense.
Ramsey theory is an active research area in combinatorics whose central theme is the emergence of order in large disordered structures, with Ramsey numbers marking the threshold at which this order first appears. For generalized Ramsey numbers $r(G,H
The main result of this paper is the extension of the Schur-Horn Theorem to infinite sequences: For two nonincreasing nonsummable sequences x and y that converge to 0, there exists a compact operator A with eigenvalue list y and diagonal sequence x i
Recently, various non-classical properties of quantum states and channels have been characterized through an advantage they provide in specific quantum information tasks over their classical counterparts. Such advantage can be typically proven to be
We extend the Boutet de Monvel Toeplitz index theorem to complex manifold with isolated singularities following the relative $K$-homology theory of Baum, Douglas, and Taylor for manifold with boundary. We apply this index theorem to study the Arveson
The graph-theoretic Ramsey numbers are notoriously difficult to calculate. In fact, for the two-color Ramsey numbers $R(m,n)$ with $m,ngeq 3$, only nine are currently known. We present a quantum algorithm for the computation of the Ramsey numbers $R(