ترغب بنشر مسار تعليمي؟ اضغط هنا

Finite-dimensional approximations and semigroup coactions for operator algebras

79   0   0.0 ( 0 )
 نشر من قبل Rapha\\\"el Clou\\^atre
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The residual finite-dimensionality of a $mathrm{C}^*$-algebra is known to be encoded in a topological property of its space of representations, stating that finite-dimensional representations should be dense therein. We extend this paradigm to general (possibly non-self-adjoint) operator algebras. While numerous subtleties emerge in this greater generality, we exhibit novel tools for constructing finite-dimensional approximations. One such tool is a notion of a residually finite-dimensional coaction of a semigroup on an operator algebra, which allows us to construct finite-dimensional approximations for operator algebras of functions and operator algebras of semigroups. Our investigation is intimately related to the question of whether residual finite-dimensionality of an operator algebra is inherited by its maximal $mathrm{C}^*$-cover, which we resolve in many cases of interest.



قيم البحث

اقرأ أيضاً

We give necessary and sufficient conditions for nuclearity of Cuntz-Nica-Pimsner algebras for a variety of quasi-lattice ordered groups. First we deal with the free abelian lattice case. We use this as a stepping stone to tackle product systems over quasi-lattices that are controlled by the free abelian lattice and satisfy a minimality property. Our setting accommodates examples like the Baumslag-Solitar lattice for $n=m>0$ and the right-angled Artin groups. More generally the class of quasi-lattices for which our results apply is closed under taking semi-direct and graph products. In the process we accomplish more. Our arguments tackle Nica-Pimsner algebras that admit a faithful conditional expectation on a small fixed point algebra and a faithful copy of the co-efficient algebra. This is the case for CNP-relative quotients in-between the Toeplitz-Nica-Pimsner algebra and the Cuntz-Nica-Pimsner algebra. We complete this study with the relevant results on exactness.
We study reflexivity and structure properties of operator algebras generated by representations of the discrete Heisenberg semi-group. We show that the left regular representation of this semi-group gives rise to a semi-simple reflexive algebra. We e xhibit an example of a representation which gives rise to a non-reflexive algebra. En route, we establish reflexivity results for subspaces of $H^{infty}(bb{T})otimescl B(cl H)$.
We present some general theorems about operator algebras that are algebras of functions on sets, including theories of local algebras, residually finite dimensional operator algebras and algebras that can be represented as the scalar multipliers of a vector-valued reproducing kernel Hilbert space. We use these to further develop a quantized function theory for various domains that extends and unifies Aglers theory of commuting contractions and the Arveson-Drury-Popescu theory of commuting row contractions. We obtain analogous factorization theorems, prove that the algebras that we obtain are dual operator algebras and show that for many domains, supremums over all commuting tuples of operators satisfying certain inequalities are obtained over all commuting tuples of matrices.
We give the beginnings of the development of a theory of what we call R-coactions of a locally compact group on a $C^*$-algebra. These are the coactions taking values in the maximal tensor product, as originally proposed by Raeburn. We show that the theory has some gaps as compared to the more familiar theory of standard coactions. However, we indicate how we needed to develop some of the basic properties of R-coactions as a tool in our program involving the use of coaction functors in the study of the Baum-Connes conjecture.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا