ترغب بنشر مسار تعليمي؟ اضغط هنا

A New Index Theorem for Monomial Ideals by Resolutions

281   0   0.0 ( 0 )
 نشر من قبل Xiang Tang
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove an index theorem for the quotient module of a monomial ideal. We obtain this result by resolving the monomial ideal by a sequence of Bergman space like essentially normal Hilbert modules.



قيم البحث

اقرأ أيضاً

An explicit combinatorial minimal free resolution of an arbitrary monomial ideal $I$ in a polynomial ring in $n$ variables over a field of characteristic $0$ is defined canonically, without any choices, using higher-dimensional generalizations of com bined spanning trees for cycles and cocycles (hedges) in the upper Koszul simplicial complexes of $I$ at lattice points in $mathbb{Z}^n$. The differentials in these sylvan resolutions are expressed as matrices whose entries are sums over lattice paths of weights determined combinatorially by sequences of hedges (hedgerows) along each lattice path. This combinatorics enters via an explicit matroidal expression for the Moore-Penrose pseudoinverses of the differentials in any CW complex as weighted averages of splittings defined by hedges. This Hedge Formula also yields a projection formula from CW chains to boundaries. The translation from Moore-Penrose combinatorics to free resolutions relies on Wall complexes, which construct minimal free resolutions of graded ideals from vertical splittings of Koszul bicomplexes. The algebra of Wall complexes applied to individual hedgerows yields explicit but noncanonical combinatorial minimal free resolutions of arbitrary monomial ideals in any characteristic.
131 - Shintaro Nishikawa 2016
In this thesis, we investigate the proof of the Baum-Connes Conjecture with Coefficients for a-$T$-menable groups. We will mostly and essentially follow the argument employed by N. Higson and G. Kasparov in the paper [Nigel Higson and Gennadi Kasparo v. $E$-theory and $KK$-theory for groups which act properly and isometrically on Hilbert space. Invent. Math., 144(1):23-74, 2001]. The crucial feature is as follows. One of the most important point of their proof is how to get the Dirac elements (the inverse of the Bott elements) in Equivariant $KK$-Theory. We prove that the group homomorphism used for the lifting of the Dirac elements is an isomorphism in the case of our interests. Hence, we get a clear and simple understanding of the lifting of the Dirac elements in the Higson-Kasparov Theorem. In the course of our investigation, on the other hand, we point out a problem and give a fixed precise definition for the non-commutative functional calculus which is defined in the paper In the final part, we mention that the $C^*$-algebra of (real) Hilbert space becomes a $G$-$C^*$-algebra naturally even when a group $G$ acts on the Hilbert space by an affine action whose linear part is of the form an isometry times a scalar and prove the infinite dimensional Bott-Periodicity in this case by using Fells absorption technique.
148 - Victor Kaftal 2009
The main result of this paper is the extension of the Schur-Horn Theorem to infinite sequences: For two nonincreasing nonsummable sequences x and y that converge to 0, there exists a compact operator A with eigenvalue list y and diagonal sequence x i f and only if y majorizes x (sum_{j=1}^n x_j le sum_{j=1}^n y_j for all n) if and only if x = Qy for some orthostochastic matrix Q. The similar result requiring equality of the infinite series in the case that the sequences x and y are summable is an extension of a recent theorem by Arveson and Kadison. Our proof depends on the construction and analysis of an infinite product of T-transform matrices. Further results on majorization for infinite sequences providing intermediate sequences generalize known results from the finite case. Majorization properties and invariance under various classes of stochastic matrices are then used to characterize arithmetic mean closed operator ideals.
This paper is concerned with the question of whether geometric structures such as cell complexes can be used to simultaneously describe the minimal free resolutions of all powers of a monomial ideal. We provide a full answer in the case of square-fre e monomial ideals of projective dimension one, by introducing a combinatorial construction of a family of (cubical) cell complexes whose 1-skeletons are powers of a graph that supports the resolution of the ideal.
We study the dual relationship between quantum group convolution maps $L^1(mathbb{G})rightarrow L^{infty}(mathbb{G})$ and completely bounded multipliers of $widehat{mathbb{G}}$. For a large class of locally compact quantum groups $mathbb{G}$ we compl etely isomorphically identify the mapping ideal of row Hilbert space factorizable convolution maps with $M_{cb}(L^1(widehat{mathbb{G}}))$, yielding a quantum Gilbert representation for completely bounded multipliers. We also identify the mapping ideals of completely integral and completely nuclear convolution maps, the latter case coinciding with $ell^1(widehat{bmathbb{G}})$, where $bmathbb{G}$ is the quantum Bohr compactification of $mathbb{G}$. For quantum groups whose dual has bounded degree, we show that the completely compact convolution maps coincide with $C(bmathbb{G})$. Our techniques comprise a mixture of operator space theory and abstract harmonic analysis, including Fubini tensor products, the non-commutative Grothendieck inequality, quantum Eberlein compactifications, and a suitable notion of quasi-SIN quantum group, which we introduce and exhibit examples from the bicrossed product construction. Our main results are new even in the setting of group von Neumann algebras $VN(G)$ for quasi-SIN locally compact groups $G$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا