ترغب بنشر مسار تعليمي؟ اضغط هنا

يتم تدريب نماذج اللغة بشكل عام على تسلسل المدخلات القصيرة والمتقطعة، والتي تحد من قدرتها على استخدام معلومات مستوى الخطاب الموجودة في سياق طويل المدى لتحسين تنبؤاتها. أدت الجهود الأخيرة لتحسين كفاءة اهتمام الذات إلى انتشار نماذج لغة محول طويلة المدى، والتي يمكن أن تعالج تسلسل أطول بكثير من نماذج الماضي. ومع ذلك، تبقى الطرق التي تستفيد منها هذه النماذج من السياق الطويل المدى غير واضح. في هذه الورقة، نقوم بإجراء تحليل جيد الحبيبات من طرازات لغة محول طويلة المدى (بما في ذلك محول التوجيه، والذي يحقق حيرة من الفن الحيرة على مجموعة بيانات BG-19 المتسلسلة LM Transmark) التي تقبل المدخلات تسلسل يصل إلى 8K الرموز. نتائجنا تكشف عن توفير سياق طويل المدى (أي، خارج الرموز 2K السابقة) لهذه النماذج يحسن فقط تنبؤاتها على مجموعة صغيرة من الرموز (على سبيل المثال، تلك التي يمكن نسخها من السياق البعيد) ولا يساعد على الإطلاق لمهام التنبؤ على مستوى الجملة. أخيرا، نكتشف أن PG-19 تحتوي على مجموعة متنوعة من أنواع المستندات والمجالات المختلفة، وأن السياق الطويل المدى يساعد معظمها على الروايات الأدبية (بدلا من الكتب المدرسية أو المجلات).
التدريب نماذج لغة كبيرة يمكن أن تستهلك كمية كبيرة من الطاقة.نفترض أن تكوين نموذج اللغة يؤثر على استهلاكها في مجال الطاقة، وأن هناك مجالا لتحسين استهلاك الطاقة في نماذج اللغة الكبيرة الحديثة.للتحقيق في هذه المطالبات، نقدم عامل استهلاك الطاقة في الوظيف ة الموضوعية، واستكشاف مجموعة النماذج وتكوينات HyperParameter التي تؤثر على الطاقة.نحدد عوامل تكوين متعددة يمكن أن تقلل من استهلاك الطاقة أثناء التدريب على نموذج اللغة مع الحفاظ على جودة النموذج.
نحن التحقيق في نماذج لغة المحولات المدربة مسبقا لسد الاستدلال.نقوم أولا بالتحقيق في رؤوس الاهتمام الفردي في بيرت ومراقبة أن رؤساء الاهتمام في طبقات أعلى تركز بشكل بارز على سد العلاقات داخل المقارنة مع الطبقات المنخفضة والمتوسطة، وكذلك عدد قليل من رؤس اء اهتمامات محددة يركزون باستمرار على سد.الأهم من ذلك، نحن نفكر في نماذج اللغة ككل في نهجنا الثاني حيث يتم صياغة دقة سد العسرة كمهمة تتنبئة رمزية مثيرة للمثنين (من اختبار Cloze).تنتج صياغتنا نتائج متفائلة دون أي ضبط جيد، مما يشير إلى أن نماذج اللغة المدربة مسبقا تلتقط بشكل كبير في سد الاستدلال.يوضح تحقيقنا الإضافي أن المسافة بين المداعين - السابقة وسوء السياق المقدمة إلى النماذج اللغوية تلعب دورا مهما في الاستدلال.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا