يعد التكيف المجال المجاني للمصدر خطا ناشئا في أبحاث التعلم العميق لأنه يرتبط ارتباطا وثيقا ببيئة العالم الحقيقي.ندرس مخصصات المجال في مشكلة تسلسل التسلسل حيث يتم تقديم الطراز الذي تم تدريبه على بيانات مجال المصدر.نقترح طريقتين: محول الذات وتدريب المص
نف الانتقائي.المحول الذاتي هو طريقة تدريب تستخدم تسميات زائفة على مستوى الجملة التي تمت تصفيتها بواسطة عتبة الانتروب الذاتي لتوفير الإشراف على النموذج بأكمله.يستخدم التدريب الانتقائي مؤشر التسميات الزائفة على مستوى الرمز المميز ويشرف على طبقة التصنيف فقط من النموذج.يتم تقييم الأساليب المقترحة على البيانات التي توفرها مهمة Semeval-2021 10 وتحقيق المحول الذاتي أداء المرتبة الثانية.
تقدم هذه الورقة المهمة المشتركة تتكيف المجال المجانية للمصدر التي عقدت داخل Semeval-2021.كان الهدف من المهمة هو استكشاف تكيف نماذج تعليم الآلات في مواجهة قيود مشاركة البيانات.على وجه التحديد، نعتبر السيناريو حيث توجد التعليقات التوضيحية للنطاق ولكن ل
ا يمكن تقاسمها.بدلا من ذلك، يتم تزويد المشاركين مع النماذج المدربة على هذه البيانات (المصدر).يتلقى المشاركون أيضا بعض البيانات المسمى من مجال جديد (تطوير) لاستكشاف خوارزميات تكيف المجال.ثم يتم اختبار المشاركين على البيانات التي تمثل مجال جديد (الهدف).استكشفنا هذا السيناريو مع اثنين من المهام الدلالية المختلفة: الكشف عن النفي (مهمة تصنيف النص) والتعرف على تعبير الوقت (مهمة وضع علامة تسلسل).
قيود مشاركة البيانات شائعة في مجموعات بيانات NLP.الغرض من هذه المهمة هو تطوير نموذج مدرب في مجال المصدر لجعل تنبؤات للمجال المستهدف مع بيانات المجال ذات الصلة.لمعالجة هذه المسألة، قدم المنظمون النماذج التي يتم ضبطها بشكل جيد على عدد كبير من بيانات مج
ال المصدر على النماذج المدربة مسبقا وبيانات DEV للمشاركين.ولكن لم يتم توزيع بيانات مجال المصدر.تصف هذه الورقة النموذج المقدم إلى مهمة NER (التعرف على كيان الاسم) وطرق تطوير النموذج.كقليل من البيانات المقدمة، تكون النماذج المدربة مسبقا مناسبة لحل المهام عبر المجال.يمكن أن تكون النماذج التي تم ضبطها من قبل عدد كبير من مجال آخر فعال في مجال جديد لأن المهمة لم تكن هناك تغيير.