إن تضمين الموضع النسبي (RPE) هو طريقة ناجحة لتشفير معلومات موقف مركزية وفعالة في نماذج المحولات.في هذه الورقة، نحقق في المشكلات المحتملة في Shaw-RPE و XL-RPE، والتي تعد أكثر من الممثلين والجلوب السائدة، واقتراح اثنين من روبيس رواية تسمى RPE الخشنة ال
خشنة الرفيعة المستوى الرفيع المستوى (LFHC)Gaussian وظيفة التوزيع التراكمي (GCDF) RPE.LFHC-RPE هو تحسن شو-RPE، مما يعزز قدرة التصور على المناصب النسبية المتوسطة والطويلة.تستخدم GCDF-RPE الخصائص الممتازة لوظيفة Gaussian لتعديل آلية الترميز السابقة في XL-RPE.النتائج التجريبية على تسعة مجموعات بيانات موثوقة تظهر فعالية أساليبنا تجريبيا.علاوة على ذلك، تحقق GCDF-RPE أفضل الأداء العام بين خمسة RPES مختلفة.
نحن نقدم Graformer، وهي عبارة عن بنية ترميز ترميز ترميز محول المبالية على أساس الرسوم البيانية إلى النص.مع انتباهنا عن الرسوم البيانية لروايتنا، يعتمد ترميز العقدة على جميع العقد في الرسم البياني للإدخال - ليس فقط الجيران المباشر - يسهل اكتشاف أنماط
عالمية.نحن نمثل العلاقة بين العقدتين كطابع أقصر المسار بينهما.يتعلم Graformer الوزن هذه العلاقات العقدة العقدة بشكل مختلف عن رؤوس اهتمام مختلفة، وبالتالي تعلم وجهات نظر متصلة بشكل مختلف عن الرسم البياني للإدخال.نقوم بتقييم GRAFORMER على اثنين من المعايير الشهيرة في الرسم البياني إلى النص، وجدول الأعمال و Webnlg، حيث يحقق أداء قوي أثناء استخدام العديد من المعلمات أقل من الأساليب الأخرى.