ترغب بنشر مسار تعليمي؟ اضغط هنا

346 - Eernesto Altshuler 2021
One of the most thrilling features of Physics is the possibility to establish analogies between apparently distant areas. Here we explain the parallel between a pile of grains interacting mechanically with each other, and a pile of superconducting vo rtices. In both cases the macroscopic slope of the pile is maintained by a very nonlinear avalanche process. Furthermore, both types of piles logarithmically relax in time due to agitational or thermal effects, aiming at a state of equilibrium.
High-order, beyond-pairwise interdependencies are at the core of biological, economic, and social complex systems, and their adequate analysis is paramount to understand, engineer, and control such systems. This paper presents a framework to measure high-order interdependence that disentangles their effect on each individual pattern exhibited by a multivariate system. The approach is centred on the local O-information, a new measure that assesses the balance between synergistic and redundant interdependencies at each pattern. To illustrate the potential of this framework, we present a detailed analysis of music scores from J.S. Bach, which reveals how high-order interdependence is deeply connected with highly non-trivial aspects of the musical discourse. Our results place the local O-information as a promising tool of wide applicability, which opens new perspectives for analysing high-order relationships in the patterns exhibited by complex systems.
For several decades a portrait of Johannes Kepler has been widely circulating among professional astronomers, scientific and academic institutions, and the general public. Despite its provenance and identification having been questioned in the early part of the last century, this painting has reached iconic status. We review its history from its first mention in the literature in the 1870s to a published but virtually unknown judgment of competent art experts of the 1920s that the work is in fact an early nineteenth century forgery. We display the painting in context with other more secure portraits and suggest that if it is based on anything, the painting may derive from the well known portrait from life of Michael Mastlin. This correction takes on certain urgency since 2021 is the 450th anniversary of Keplers birth.
It is demonstrated that the development of a nuclear fusion rocket engine based on a D $-$ $^{3}$He (Deterium-Helium 3) technology will allow to travel in the solar system and beyond. The Direct Fusion Drive (DFD) is the D $-$ $^{3}$He-fueled, aneutr onic, thermonuclear fusion propulsion system that is under development at Princeton University Plasma Physics Laboratory [1]. It is considered and analyzed the Earth-Mars mission using the DFD. It is shown that one-way trips to Mars in slightly more than 100 days become possible and also journeys to the asteroid belt will take about 250 days [2]. It is presented an analysis of realistic new trajectories for a robotic mission to Saturns largest moon, Titan, to demonstrate the great advantages related to the thermonuclear DFD. The trajectories calculations and analysis for Saturns largest moon Titan different profile missions are given based on the characteristics of a 2 MW class DFD engine. This capability results in a total trip duration of 2.6 years for the thrust-coast-thrust profile and less than 2 years for the continuous thrust profile [3]. Using the same 2 MW class DFD engine one can reach some trans-Neptunian object, such as the dwarf planets Makemake, Eris, and Haumea in less than 10 years with a payload mass of at least 1500 kg, so that it would enable all kind of missions, from scientific observation to in-situ operations [4]. We consider for each mission a Thrust-Coast-Thrust profile. For this reason, each mission is divided into 3 phases: i. the trajectory to escape Earth gravity influence; ii. the interplanetary travel, from the exit of Earth sphere of influence to the end of the coasting phase; iii. maneuvers to rendezvous with a target object. We present calculations to reach a vicinity at 125 AU.
157 - Naoki Seto 2021
We study an interstellar signaling scheme which was originally proposed by Seto (2019) and efficiently links intentional transmitters to ETI searchers through a conspicuous astronomical burst, without prior communication. Based on the geometrical and game theoretic viewpoints, the scheme can be refined so that intentional signals can be sent and received after observing a reference burst, in contrast to the original proposal (before observing a burst). Given this inverted temporal structure, Galactic supernovae recorded in the past 2000 years can be regarded as interesting guideposts for an ETI search. While the best use period of SN 393 has presumably passed $sim$100 years ago, some of the historical supernovae might allow us to compactify the ETI survey regions down to less than one present of $4pi$, around two rings in the sky.
A foundational model has been developed based on trends built from empirical data of space exploration and computing power through the first six plus decades of the Space Age which projects earliest possible launch dates for human-crewed missions fro m cis-lunar space to selected Solar System and interstellar destinations. The model uses computational power, expressed as transistors per microprocessor, as a key broadly limiting factor for deep space missions reach and complexity. The goal of this analysis is to provide a projected timeframe for humanity to become a multi-world species through off-world colonization, and in so doing all but guarantees the long-term survival of the human race from natural and human-caused calamities that could befall life on Earth. Be-ginning with the development and deployment of the first nuclear weapons near the end of World War II, humanity entered a Window of Peril which will not be safely closed until robust off-world colonies become a reality. Our findings suggest the first human-crewed missions to land on Mars, selected Asteroid Belt objects, and selected moons of Jupiter and Saturn can occur before the end of the 21st century. Launches of human-crewed interstellar missions to exoplanet destinations within roughly 40 lightyears of the Solar System are seen as possible during the 23rd century and launch of intragalactic missions by the end of the 24th century. An aggressive and sustained space exploration program, which includes colonization, is thus seen as critical to the long-term survival of the human race.
Mastering semiconductor technology is essential to insert any country into the trends of the future, such as smart cities, internet of things, space exploration, etc. In this paper we present the growing annual revenue of the semiconductor industry i n the last 20 years and comment on the importance of mastering semiconductor production technology and its implications for the development of a nation.
Drawable electronics attract the attention of both educators and innovative circuit engineers due to their affordability and simplicity. This paper focuses on active learning activities related to conducting lines and presents extensible laboratory p rojects suitable for students of all levels -- from late primary school pupils to early undergraduate students. We build on ideas of Pouillets law classroom demonstrations with pencil drawings on paper and continue with a line, circle and grid drawings and appropriate resistance measurements. These are used as methodological examples of drawable circuits suitable for learning about resistors in series, parallel and mixed combinations. Particularly, grid drawings, e.g. mixed circuits, offer a variety of exercises that can connect analytical and experimental approaches and instigate discussions about assessments of uncertainty. Along the way, we propose ideas for extracurricular projects students can undertake to further their experimental knowledge and practise the scientific method.
Background: A solar sail presents a large sheet of low areal density membrane and is the most elegant propellant-less propulsion system for the future exploration of the Solar System and beyond. By today the study on sail membrane deployment strategi es has attracted considerable attention. Goal: In this work we present an idea of the deployment and stretching of the circular solar sail. We consider the superconducting current loop attached to the thin membrane %to develop a new (method) approach of deployment of a solar sail and and predict that a superconducting current loop can deploy and stretch the circular solar sail membrane. Method: In the framework of a strict mathematical approach based on the classical electrodynamics and theory of elasticity the magnetic field induced by the superconducting current loop and elastic properties of a circular solar sail membrane and wire loop are analyzed. The formulas for the wire and sail membrane stresses and strains caused by the current in the superconducting wire are derived. Results: The obtained analytical expressions can be applied to a wide range of solar sail sizes. Numerical calculations for the sail of radius of 5 m to 150 m made of CP1 membrane of the thickness of 3.5 $mu m$ attached to Bi$-$2212 superconducting wire with the cross-section radius of 0.5 mm to 10 mm are presented. Calculations are performed for the engineering current densities of 100 A/mm$^{2}$ to 1000 A/mm$^{2}$. Conclusion: Our calculations demonstrate the feasibility of the proposed idea for the solar sail deployment for the future exploration of the deep space by means of the light pressure propellant.
We present an overview of the art project Aganta Kairos (To Fish the Metaphysical Time). This project celebrates the neutrino, the ghost particle, which scientists consider a cosmic messenger and the artist regards as a link between people who care a bout their relationship to the cosmos and question their origins. The artwork is based on a performance of celebration and seeks to build a human community that encompasses different knowledge domains and interpretations of the universe. This intersection of knowledge is realized during the performance of placing a plaque, held with witnesses, and during subsequent exhibitions. Images, sounds, videos, and sculpture testify to the diversity of approaches to questioning our origins, ranging from traditional western science to ancient shamanism. The sites were selected for their global coverage and, for the South Pole, Mediterranean, and Lake Baikal, their connection to ongoing neutrino experiments. In December 2020, a plaque was installed at the South Pole IceCube Laboratory, the seventh and final site. We provide examples of images and links to additional images and videos.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا