ﻻ يوجد ملخص باللغة العربية
It is demonstrated that the development of a nuclear fusion rocket engine based on a D $-$ $^{3}$He (Deterium-Helium 3) technology will allow to travel in the solar system and beyond. The Direct Fusion Drive (DFD) is the D $-$ $^{3}$He-fueled, aneutronic, thermonuclear fusion propulsion system that is under development at Princeton University Plasma Physics Laboratory [1]. It is considered and analyzed the Earth-Mars mission using the DFD. It is shown that one-way trips to Mars in slightly more than 100 days become possible and also journeys to the asteroid belt will take about 250 days [2]. It is presented an analysis of realistic new trajectories for a robotic mission to Saturns largest moon, Titan, to demonstrate the great advantages related to the thermonuclear DFD. The trajectories calculations and analysis for Saturns largest moon Titan different profile missions are given based on the characteristics of a 2 MW class DFD engine. This capability results in a total trip duration of 2.6 years for the thrust-coast-thrust profile and less than 2 years for the continuous thrust profile [3]. Using the same 2 MW class DFD engine one can reach some trans-Neptunian object, such as the dwarf planets Makemake, Eris, and Haumea in less than 10 years with a payload mass of at least 1500 kg, so that it would enable all kind of missions, from scientific observation to in-situ operations [4]. We consider for each mission a Thrust-Coast-Thrust profile. For this reason, each mission is divided into 3 phases: i. the trajectory to escape Earth gravity influence; ii. the interplanetary travel, from the exit of Earth sphere of influence to the end of the coasting phase; iii. maneuvers to rendezvous with a target object. We present calculations to reach a vicinity at 125 AU.
To develop a spacefaring civilization, humankind must develop technologies which enable safe, affordable and repeatable mobility through the solar system. One such technology is nuclear fusion propulsion which is at present under study mostly as a br
The Direct Fusion Drive (DFD) is a nuclear fusion engine that will provide thrust and electrical power for any spacecraft. It is a compact engine, based on the D -$^{3}$He aneutronic fusion reaction that uses the Princeton field reversed configuratio
The main purpose of this work is to perform an analysis of realistic new trajectories for a robotic mission to Saturns largest moon, Titan, in order to demonstrate the great advantages related to the Direct Fusion Drive (DFD). The DFD is a D -$^3$He
Two new interplanetary technologies have advanced in the past decade to the point where they may enable exciting, affordable missions that reach further and faster deep into the outer regions of our solar system: (i) small and capable interplanetary
The search for life on planets outside our solar system has largely been the province of the astrophysics community until recently. A major development since the NASA Astrobiology Strategy 2015 document (AS15) has been the integration of other NASA s