ترغب بنشر مسار تعليمي؟ اضغط هنا

$^{31}$P NMR and MRI are commonly used to study organophosphates that are central to cellular energy metabolism. In some molecules of interest, such as adenosine diphosphate (ADP) and nicotinamide adenine dinucleotide (NAD), pairs of coupled $^{31}$P nuclei in the diphosphate moiety should enable the creation of nuclear spin singlet states, which may be long-lived and can be selectively detected via quantum filters. Here, we show that $^{31}$P singlet states can be created on ADP and NAD, but their lifetimes are shorter than T$_{1}$ and are strongly sensitive to pH. Nevertheless, the singlet states were used with a quantum filter to successfully isolate the $^{31}$P NMR spectra of those molecules from the adenosine triphosphate (ATP) background signal.
As a means to extract biomarkers from medical imaging, radiomics has attracted increased attention from researchers. However, reproducibility and performance of radiomics in low dose CT scans are still poor, mostly due to noise. Deep learning generat ive models can be used to denoise these images and in turn improve radiomics reproducibility and performance. However, most generative models are trained on paired data, which can be difficult or impossible to collect. In this article, we investigate the possibility of denoising low dose CTs using cycle generative adversarial networks (GANs) to improve radiomics reproducibility and performance based on unpaired datasets. Two cycle GANs were trained: 1) from paired data, by simulating low dose CTs (i.e., introducing noise) from high dose CTs; and 2) from unpaired real low dose CTs. To accelerate convergence, during GAN training, a slice-paired training strategy was introduced. The trained GANs were applied to three scenarios: 1) improving radiomics reproducibility in simulated low dose CT images and 2) same-day repeat low dose CTs (RIDER dataset) and 3) improving radiomics performance in survival prediction. Cycle GAN results were compared with a conditional GAN (CGAN) and an encoder-decoder network (EDN) trained on simulated paired data.The cycle GAN trained on simulated data improved concordance correlation coefficients (CCC) of radiomic features from 0.87 to 0.93 on simulated noise CT and from 0.89 to 0.92 on RIDER dataset, as well improving the AUC of survival prediction from 0.52 to 0.59. The cycle GAN trained on real data increased the CCCs of features in RIDER to 0.95 and the AUC of survival prediction to 0.58. The results show that cycle GANs trained on both simulated and real data can improve radiomics reproducibility and performance in low dose CT and achieve similar results compared to CGANs and EDNs.
Optical coherence tomography (OCT) is a widely used imaging technique in the micrometer regime, which gained accelerating interest in medical imaging %and material testing in the last twenty years. In up-to-date OCT literature [5,6] certain simplifyi ng assumptions are made for the reconstructions, but for many applications a more realistic description of the OCT imaging process is of interest. In mathematical models, for example, the incident angle of light onto the sample is usually neglected or %although having a huge impact on the laser power inside the sample is usually neglected or a plane wave description for the light-sample interaction in OCT is used, which ignores almost completely the occurring effects within an OCT measurement process. In this article, we make a first step to a quantitative model by considering the measured intensity as a combination of back-scattered Gaussian beams affected by the system. In contrast to the standard plane wave simplification, the presented model includes system relevant parameters such as the position of the focus and the spot size of the incident laser beam, which allow a precise prediction of the OCT data and therefore ultimately serves as a forward model. The accuracy of the proposed model - after calibration of all necessary system parameters - is illustrated by simulations and validated by a comparison with experimental data obtained from a 1300nm swept-source OCT system.
We suggest to utilize the rich information content about microstructural tissue properties entangled in asymmetric balanced steady-state free precession (bSSFP) profiles to estimate multiple diffusion metrics simultaneously by neural network (NN) par ameter quantification. A 12-point bSSFP phase-cycling scheme with high-resolution whole-brain coverage is employed at 3 T and 9.4 T for NN input. Low-resolution target diffusion data are derived based on diffusion-weighted spin-echo echo-planar-imaging (SE-EPI) scans, i.e., mean, axial, and radial diffusivity (MD, AD, RD), fractional anisotropy (FA) as well as the spherical coordinates (azimuth ${Phi}$ and inclination ${Theta}$) of the principal diffusion eigenvector. A feedforward NN is trained with incorporated probabilistic uncertainty estimation. The NN predictions yielded highly reliable results in white matter (WM) and gray matter (GM) structures for MD. The quantification of FA, AD, and RD was overall in good agreement with the reference but the dependence of these parameters on WM anisotropy was somewhat biased, e.g., in corpus callosum. The inclination ${Theta}$ was well predicted for anisotropic WM structures while the azimuth ${Phi}$ was overall poorly predicted. The findings were highly consistent across both field strengths. Application of the optimized NN to high-resolution input data provided whole-brain maps with rich structural details. In conclusion, the proposed NN-driven approach showed potential to provide distortion-free high-resolution whole-brain maps of multiple diffusion metrics at high to ultra-high field strengths in clinically relevant scan times.
We propose an extended primal-dual algorithm framework for solving a general nonconvex optimization model. This work is motivated by image reconstruction problems in a class of nonlinear imaging, where the forward operator can be formulated as a nonl inear convex function with respect to the reconstructed image. Using the proposed framework, we put forward six specific iterative schemes, and present their detailed mathematical explanation. We also establish the relationship to existing algorithms. Moreover, under proper assumptions, we analyze the convergence of the schemes for the general model when the optimal dual variable regarding the nonlinear operator is non-vanishing. As a representative, the image reconstruction for spectral computed tomography is used to demonstrate the effectiveness of the proposed algorithm framework. By special properties of the concrete problem, we further prove the convergence of these customized schemes when the optimal dual variable regarding the nonlinear operator is vanishing. Finally, the numerical experiments show that the proposed algorithm has good performance on image reconstruction for various data with non-standard scanning configuration.
Invasive intracranial electroencephalography (iEEG) or electrocorticography (ECoG) measures electrical potential directly on the surface of the brain, and, combined with numerical modeling, can be used to inform treatment planning for epilepsy surger y. Accurate solution of the iEEG or ECoG forward problem, which is a crucial prerequisite for solving the inverse problem in epilepsy seizure onset localization, requires accurate representation of the patients brain geometry and tissue electrical conductivity after implantation of electrodes. However, implantation of subdural grid electrodes causes the brain to deform, which invalidates preoperatively acquired image data. Moreover, postoperative MRI is incompatible with implanted electrodes and CT has insufficient range of soft tissue contrast, which precludes both MRI and CT from being used to obtain the deformed postoperative geometry. In this paper, we present a biomechanics-based image warping procedure using preoperative MRI for tissue classification and postoperative CT for locating implanted electrodes to perform non-rigid registration of the preoperative image data to the postoperative configuration. We solve the iEEG forward problem on the predicted postoperative geometry using the finite element method (FEM) which accounts for patient-specific inhomogeneity and anisotropy of tissue conductivity. Results for the simulation of a current source in the brain show large differences in electrical potential predicted by the models based on the original images and the deformed images corresponding to the brain geometry deformed by placement of invasive electrodes. Computation of the leadfield matrix also showed significant differences between the different models. The results suggest that significant improvements in source localization accuracy may be realized by the application of the proposed modeling methodology.
Automatic myocardial segmentation of contrast echocardiography has shown great potential in the quantification of myocardial perfusion parameters. Segmentation quality control is an important step to ensure the accuracy of segmentation results for qu ality research as well as its clinical application. Usually, the segmentation quality control happens after the data acquisition. At the data acquisition time, the operator could not know the quality of the segmentation results. On-the-fly segmentation quality control could help the operator to adjust the ultrasound probe or retake data if the quality is unsatisfied, which can greatly reduce the effort of time-consuming manual correction. However, it is infeasible to deploy state-of-the-art DNN-based models because the segmentation module and quality control module must fit in the limited hardware resource on the ultrasound machine while satisfying strict latency constraints. In this paper, we propose a hardware-aware neural architecture search framework for automatic myocardial segmentation and quality control of contrast echocardiography. We explicitly incorporate the hardware latency as a regularization term into the loss function during training. The proposed method searches the best neural network architecture for the segmentation module and quality prediction module with strict latency.
Purpose: Several inverse planning algorithms have been developed for Gamma Knife (GK) radiosurgery to determine a large number of plan parameters via solving an optimization problem, which typically consists of multiple objectives. The priorities amo ng these objectives need to be repetitively adjusted to achieve a clinically good plan for each patient. This study aimed to achieve automatic and intelligent priority-tuning, by developing a deep reinforcement learning (DRL) based method to model the tuning behaviors of human planners. Methods: We built a priority-tuning policy network using deep convolutional neural networks. Its input was a vector composed of the plan metrics that were used in our institution for GK plan evaluation. The network can determine which tuning action to take, based on the observed quality of the intermediate plan. We trained the network using an end-to-end DRL framework to approximate the optimal action-value function. A scoring function was designed to measure the plan quality. Results: Vestibular schwannoma was chosen as the test bed in this study. The number of training, validation and testing cases were 5, 5, and 16, respectively. For these three datasets, the average plan scores with initial priorities were 3.63 $pm$ 1.34, 3.83 $pm$ 0.86 and 4.20 $pm$ 0.78, respectively, while can be improved to 5.28 $pm$ 0.23, 4.97 $pm$ 0.44 and 5.22 $pm$ 0.26 through manual priority tuning by human expert planners. Our network achieved competitive results with 5.42 $pm$ 0.11, 5.10 $pm$ 0. 42, 5.28 $pm$ 0.20, respectively. Conclusions: Our network can generate GK plans of comparable or slightly higher quality comparing with the plans generated by human planners via manual priority tuning. The network can potentially be incorporated into the clinical workflow to improve GK planning efficiency.
Whilst debilitating breathing disorders, such as chronic obstructive pulmonary disease (COPD), are rapidly increasing in prevalence, we witness a continued integration of artificial intelligence into healthcare. While this promises improved detection and monitoring of breathing disorders, AI techniques are data hungry which highlights the importance of generating physically meaningful surrogate data. Such domain knowledge aware surrogates would enable both an improved understanding of respiratory waveform changes with different breathing disorders and different severities, and enhance the training of machine learning algorithms. To this end, we introduce an apparatus comprising of PVC tubes and 3D printed parts as a simple yet effective method of simulating both obstructive and restrictive respiratory waveforms in healthy subjects. Independent control over both inspiratory and expiratory resistances allows for the simulation of obstructive breathing disorders through the whole spectrum of FEV1/FVC spirometry ratios (used to classify COPD), ranging from healthy values to values seen in severe chronic obstructive pulmonary disease. Moreover, waveform characteristics of breathing disorders, such as a change in inspiratory duty cycle or peak flow are also observed in the waveforms resulting from use of the artificial breathing disorder simulation apparatus. Overall, the proposed apparatus provides us with a simple, effective and physically meaningful way to generate surrogate breathing disorder waveforms, a prerequisite for the use of artificial intelligence in respiratory health.
We present PRETUS -a Plugin-based Real Time UltraSound software platform for live ultrasound image analysis and operator support. The software is lightweight; functionality is brought in via independent plug-ins that can be arranged in sequence. The software allows to capture the real-time stream of ultrasound images from virtually any ultrasound machine, applies computational methods and visualises the results on-the-fly. Plug-ins can run concurrently without blocking each other. They can be implemented in C ++ and Python. A graphical user interface can be implemented for each plug-in, and presented to the user in a compact way. The software is free and open source, and allows for rapid prototyping and testing of real-time ultrasound imaging methods in a manufacturer-agnostic fashion. The software is provided with input, output and processing plug-ins, as well as with tutorials to illustrate how to develop new plug-ins for PRETUS.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا