ﻻ يوجد ملخص باللغة العربية
As a means to extract biomarkers from medical imaging, radiomics has attracted increased attention from researchers. However, reproducibility and performance of radiomics in low dose CT scans are still poor, mostly due to noise. Deep learning generative models can be used to denoise these images and in turn improve radiomics reproducibility and performance. However, most generative models are trained on paired data, which can be difficult or impossible to collect. In this article, we investigate the possibility of denoising low dose CTs using cycle generative adversarial networks (GANs) to improve radiomics reproducibility and performance based on unpaired datasets. Two cycle GANs were trained: 1) from paired data, by simulating low dose CTs (i.e., introducing noise) from high dose CTs; and 2) from unpaired real low dose CTs. To accelerate convergence, during GAN training, a slice-paired training strategy was introduced. The trained GANs were applied to three scenarios: 1) improving radiomics reproducibility in simulated low dose CT images and 2) same-day repeat low dose CTs (RIDER dataset) and 3) improving radiomics performance in survival prediction. Cycle GAN results were compared with a conditional GAN (CGAN) and an encoder-decoder network (EDN) trained on simulated paired data.The cycle GAN trained on simulated data improved concordance correlation coefficients (CCC) of radiomic features from 0.87 to 0.93 on simulated noise CT and from 0.89 to 0.92 on RIDER dataset, as well improving the AUC of survival prediction from 0.52 to 0.59. The cycle GAN trained on real data increased the CCCs of features in RIDER to 0.95 and the AUC of survival prediction to 0.58. The results show that cycle GANs trained on both simulated and real data can improve radiomics reproducibility and performance in low dose CT and achieve similar results compared to CGANs and EDNs.
As an analytic pipeline for quantitative imaging feature extraction and analysis, radiomics has grown rapidly in the past a few years. Recent studies in radiomics aim to investigate the relationship between tumors imaging features and clinical outcom
Low-dose computed tomography (LDCT) scans, which can effectively alleviate the radiation problem, will degrade the imaging quality. In this paper, we propose a novel LDCT reconstruction network that unrolls the iterative scheme and performs in both i
Computed tomography (CT) has played a vital role in medical diagnosis, assessment, and therapy planning, etc. In clinical practice, concerns about the increase of X-ray radiation exposure attract more and more attention. To lower the X-ray radiation,
Radiomics is an active area of research focusing on high throughput feature extraction from medical images with a wide array of applications in clinical practice, such as clinical decision support in oncology. However, noise in low dose computed tomo
Isoprene is one of the most abundant endogenous volatile organic compounds (VOCs) contained in human breath and is considered to be a potentially useful biomarker for diagnostic and monitoring purposes. However, neither the exact biochemical origin o