ترغب بنشر مسار تعليمي؟ اضغط هنا

223 - Deyang Yu 2017
Design details of a 127 degree electrostatic cylindrical spectrometer equipped with a position-sensitive micro-channel plate detector for measuring the sputtered ions in collisions of highly charged ions with solid surface is described. The nonlinear relationship between the point of fall versus the ionic energy, the blurring of the point of fall caused by the divergence of incident angle and the finite entrance aperture, the transform from a position spectrum to an energy spectrum, as well as the influence of the fringing fields are discussed.
166 - C. Lane , S.M. Usman , J. Blackmon 2015
We describe a new detector, called NuLat, to study electron anti-neutrinos a few meters from a nuclear reactor, and search for anomalous neutrino oscillations. Such oscillations could be caused by sterile neutrinos, and might explain the Reactor Anti neutrino Anomaly. NuLat, is made possible by a natural synergy between the miniTimeCube and mini-LENS programs described in this paper. It features a Raghavan Optical Lattice (ROL) consisting of 3375 boron or $^6$Li loaded plastic scintillator cubical cells 6.3,cm (2.500) on a side. Cell boundaries have a 0.127,mm (0.005) air gap, resulting in total internal reflection guiding most of the light down the 3 cardinal directions. The ROL detector technology for NuLat gives excellent spatial and energy resolution and allows for in-depth event topology studies. These features allow us to discern inverse beta decay (IBD) signals and the putative oscillation pattern, even in the presence of other backgrounds. We discuss here test venues, efficiency, sensitivity and project status.
A bubble chamber has been developed to be used as an active target system for low energy nuclear astrophysics experiments. Adopting ideas from dark matter detection with superheated liquids, a detector system compatible with gamma-ray beams has been developed. This detector alleviates some of the limitations encountered in standard measurements of the minute cross sections of interest to stellar environments. While the astrophysically relevant nuclear reaction processes at hydrostatic burning temperatures are dominated by radiative captures, in this experimental scheme we measure the time-reversed processes. Such photodisintegrations allow us to compute the radiative capture cross sections when transitions to excited states of the reaction products are negligible. Due to the transformation of phase space, the photodisintegration cross sections are up to two orders of magnitude higher. The main advantage of the new target-detector system is a density several orders of magnitude higher than conventional gas targets. Also, the detector is virtually insensitive to the gamma-ray beam itself, thus allowing us to detect only the products of the nuclear reaction of interest. The development and the operation as well as the advantages and disadvantages of the bubble chamber are discussed.
The Muon (g-2) Experiment, E989 at Fermilab, will measure the muon anomalous magnetic moment a factor-of-four more precisely than was done in E821 at the Brookhaven National Laboratory AGS. The E821 result appears to be greater than the Standard-Mode l prediction by more than three standard deviations. When combined with expected improvement in the Standard-Model hadronic contributions, E989 should be able to determine definitively whether or not the E821 result is evidence for physics beyond the Standard Model. After a review of the physics motivation and the basic technique, which will use the muon storage ring built at BNL and now relocated to Fermilab, the design of the new experiment is presented. This document was created in partial fulfillment of the requirements necessary to obtain DOE CD-2/3 approval.
The MINERvA collaboration operated a scaled-down replica of the solid scintillator tracking and sampling calorimeter regions of the MINERvA detector in a hadron test beam at the Fermilab Test Beam Facility. This article reports measurements with samp les of protons, pions, and electrons from 0.35 to 2.0 GeV/c momentum. The calorimetric response to protons, pions, and electrons are obtained from these data. A measurement of the parameter in Birks law and an estimate of the tracking efficiency are extracted from the proton sample. Overall the data are well described by a Geant4-based Monte Carlo simulation of the detector and particle interactions with agreements better than 4%, though some features of the data are not precisely modeled. These measurements are used to tune the MINERvA detector simulation and evaluate systematic uncertainties in support of the MINERvA neutrino cross section measurement program.
Aiming at the observation of cosmic-ray chemical composition at the knee energy region, we have been developinga new type air-shower core detector (YAC, Yangbajing Air shower Core detector array) to be set up at Yangbajing (90.522$^circ$ E, 30.102$^c irc$ N, 4300 m above sea level, atmospheric depth: 606 g/m$^2$) in Tibet, China. YAC works together with the Tibet air-shower array (Tibet-III) and an underground water cherenkov muon detector array (MD) as a hybrid experiment. Each YAC detector unit consists of lead plates of 3.5 cm thick and a scintillation counter which detects the burst size induced by high energy particles in the air-shower cores. The burst size can be measured from 1 MIP (Minimum Ionization Particle) to $10^{6}$ MIPs. The first phase of this experiment, named YAC-I, consists of 16 YAC detectors each having the size 40 cm $times$ 50 cm and distributing in a grid with an effective area of 10 m$^{2}$. YAC-I is used to check hadronic interaction models. The second phase of the experiment, called YAC-II, consists of 124 YAC detectors with coverage about 500 m$^2$. The inner 100 detectors of 80 cm $times $ 50 cm each are deployed in a 10 $times$ 10 matrix from with a 1.9 m separation and the outer 24 detectors of 100 cm $times$ 50 cm each are distributed around them to reject non-core events whose shower cores are far from the YAC-II array. YAC-II is used to study the primary cosmic-ray composition, in particular, to obtain the energy spectra of proton, helium and iron nuclei between 5$times$$10^{13}$ eV and $10^{16}$ eV covering the knee and also being connected with direct observations at energies around 100 TeV. We present the design and performance of YAC-II in this paper.
The Japanese Experiment Module (JEM) Extreme Universe Space Observatory (EUSO) will be launched and attached to the Japanese module of the International Space Station (ISS). Its aim is to observe UV photon tracks produced by ultra-high energy cosmic rays developing in the atmosphere and producing extensive air showers. The key element of the instrument is a very wide-field, very fast, large-lense telescope that can detect extreme energy particles with energy above $10^{19}$ eV. The Atmospheric Monitoring System (AMS), comprising, among others, the Infrared Camera (IRCAM), which is the Spanish contribution, plays a fundamental role in the understanding of the atmospheric conditions in the Field of View (FoV) of the telescope. It is used to detect the temperature of clouds and to obtain the cloud coverage and cloud top altitude during the observation period of the JEM-EUSO main instrument. SENER is responsible for the preliminary design of the Front End Electronics (FEE) of the Infrared Camera, based on an uncooled microbolometer, and the manufacturing and verification of the prototype model. This paper describes the flight design drivers and key factors to achieve the target features, namely, detector biasing with electrical noise better than $100 mu$V from $1$ Hz to $10$ MHz, temperature control of the microbolometer, from $10^{circ}$C to $40^{circ}$C with stability better than $10$ mK over $4.8$ hours, low noise high bandwidth amplifier adaptation of the microbolometer output to differential input before analog to digital conversion, housekeeping generation, microbolometer control, and image accumulation for noise reduction.
We report on the effects of ionizing radiation on 65nm CMOS transistors held at approximately -20C during irradiation. The pattern of damage observed after a total dose of 1 Grad is similar to damage reported in room temperature exposures, but we obs erve less damage than was observed at room temperature.
A low energy photon spectrometer (LEPS), which is a composite planar HPGe, has been characterised experimentally. It has been shown that beyond 200 keV, effect of image charges deteriorates the efficiency of the detector in its addback mode. Data has been corrected on eventby- event basis resulting in improvement of the performance.
For the production of a polarized antiproton beam various methods have been suggested including the possibility that antiprotons may be produced polarized which will be checked experimentally. The polarization of antiprotons produced under typical co nditions for antiproton beam preparation will be measured at the CERN/PS. If the production process creates some polarization a polarized antiproton beam could be prepared by a rather simple modification of the antiproton beam facility. The detection setup and the expected experimental conditions are described.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا