On-site boundary conditions are often desired for lattice Boltzmann simulations of fluid flow in complex geometries such as porous media or microfluidic devices. The possibility to specify the exact position of the boundary, independent of other simu
lation parameters, simplifies the analysis of the system. For practical applications it should allow to freely specify the direction of the flux, and it should be straight forward to implement in three dimensions. Furthermore, especially for parallelized solvers it is of great advantage if the boundary condition can be applied locally, involving only information available on the current lattice site. We meet this need by describing in detail how to transfer the approach suggested by Zou and He to a D3Q19 lattice. The boundary condition acts locally, is independent of the details of the relaxation process during collision and contains no artificial slip. In particular, the case of an on-site no-slip boundary condition is naturally included. We test the boundary condition in several setups and confirm that it is capable to accurately model the velocity field up to second order and does not contain any numerical slip.
We employ granular hydrodynamics to investigate a paradigmatic problem of clustering of particles in a freely cooling dilute granular gas. We consider large-scale hydrodynamic motions where the viscosity and heat conduction can be neglected, and one
arrives at the equations of ideal gas dynamics with an additional term describing bulk energy losses due to inelastic collisions. We employ Lagrangian coordinates and derive a broad family of exact non-stationary analytical solutions that depend only on one spatial coordinate. These solutions exhibit a new type of singularity, where the gas density blows up in a finite time when starting from smooth initial conditions. The density blowups signal formation of close-packed clusters of particles. As the density blow-up time $t_c$ is approached, the maximum density exhibits a power law $sim (t_c-t)^{-2}$. The velocity gradient blows up as $sim - (t_c-t)^{-1}$ while the velocity itself remains continuous and develops a cusp (rather than a shock discontinuity) at the singularity. The gas temperature vanishes at the singularity, and the singularity follows the isobaric scenario: the gas pressure remains finite and approximately uniform in space and constant in time close to the singularity. An additional exact solution shows that the density blowup, of the same type, may coexist with an ordinary shock, at which the hydrodynamic fields are discontinuous but finite. We confirm stability of the exact solutions with respect to small one-dimensional perturbations by solving the ideal hydrodynamic equations numerically. Furthermore, numerical solutions show that the local features of the density blowup hold universally, independently of details of the initial and boundary conditions.
The effects of line-tying on resistive tearing instability in slab geometry is studied within the framework of reduced magnetohydrodynamics (RMHD).citep{KadomtsevP1974,Strauss1976} It is found that line-tying has a stabilizing effect. The tearing mod
e is stabilized when the system length $L$ is shorter than a critical length $L_{c}$, which is independent of the resistivity $eta$. When $L$ is not too much longer than $L_{c}$, the growthrate $gamma$ is proportional to $eta$ . When $L$ is sufficiently long, the tearing mode scaling $gammasimeta^{3/5}$ is recovered. The transition from $gammasimeta$ to $gammasimeta^{3/5}$ occurs at a transition length $L_{t}simeta^{-2/5}$.
Microscopic vapor explosions or cavitation bubbles can be generated periodically in an optical tweezer with a microparticle that partially absorbs at the trapping laser wavelength. In this work we measure the size distribution and the production rate
of cavitation bubbles for microparticles with a diameter of 3 $mu$m using high speed video recording and a fast photodiode. We find that there is a lower bound for the maximum bubble radius $R_{max}sim 2~mu$m which can be explained in terms of the microparticle size. More than $94 %$ of the measured $R_{max}$ are in the range between 2 and 6 $mu$m, while the same percentage of the measured individual frequencies $f_i$ or production rates are between 10 and 200 Hz. The photodiode signal yields an upper bound for the lifetime of the bubbles, which is at most twice the value predicted by the Rayleigh equation. We also report empirical relations between $R_{max}$, $f_i$ and the bubble lifetimes.
This work investigates the migration of spherical particles of different sizes in a centrifuge-driven deterministic lateral displacement (c-DLD) device. Specifically, we use a scaled-up model to study the motion of suspended particles through a squar
e array of cylindrical posts under the action of centrifugation. Experiments show that separation of particles by size is possible depending on the orientation of the driving acceleration with respect to the array of posts (forcing angle). We focus on the fractionation of binary suspensions and measure the separation resolution at the outlet of the device for different forcing angles. We found excellent resolution at intermediate forcing angles, when large particles are locked to move at small migration angles but smaller particles follow the forcing angle more closely. Finally, we show that reducing the initial concentration (number) of particles, approaching the dilute limit of single particles, leads to increased resolution in the separation.
Dissolution fingers (or wormholes) are formed during the dissolution of a porous rock as a result of nonlinear feedbacks between the flow, transport and chemical reactions at pore surfaces. We analyze the shapes and growth velocities of such fingers
within the thin-front approximation, in which the reaction is assumed to take place instantaneously with the reactants fully consumed at the dissolution front. We concentrate on the case when the main flow is driven by the constant pressure gradient far from the finger, and the permeability contrast between the inside and the outside of the finger is finite. Using Ivantsov ansatz and conformal transformations we find the family of steadily translating fingers characterized by a parabolic shape. We derive the reactant concentration field and the pressure field inside and outside of the fingers and show that the flow within them is uniform. The advancement velocity of the finger is shown to be inversely proportional to its radius of curvature in the small P{e}clet number limit and constant for large P{e}clet numbers.
Classical hydrodynamic models predict that infinite work is required to move a three-phase contact line, defined here as the line where a liquid/vapor interface intersects a solid surface. Assuming a slip boundary condition, in which the liquid slide
s against the solid, such an unphysical prediction is avoided. In this article, we present the results of experiments in which a contact line moves and where slip is a dominating and controllable factor. Spherical cap shaped polystyrene microdroplets, with non-equilibrium contact angle, are placed on solid self-assembled monolayer coatings from which they dewet. The relaxation is monitored using textit{in situ} atomic force microscopy. We find that slip has a strong influence on the droplet evolutions, both on the transient non-spherical shapes and contact line dynamics. The observations are in agreement with scaling analysis and boundary element numerical integration of the governing Stokes equations, including a Navier slip boundary condition.
Steady flows that optimize heat transport are obtained for two-dimensional Rayleigh-Benard convection with no-slip horizontal walls for a variety of Prandtl numbers $Pr$ and Rayleigh number up to $Rasim 10^9$. Power law scalings of $Nusim Ra^{gamma}$
are observed with $gammaapprox 0.31$, where the Nusselt number $Nu$ is a non-dimensional measure of the vertical heat transport. Any dependence of the scaling exponent on $Pr$ is found to be extremely weak. On the other hand, the presence of two local maxima of $Nu$ with different horizontal wavenumbers at the same $Ra$ leads to the emergence of two different flow structures as candidates for optimizing the heat transport. For $Pr lesssim 7$, optimal transport is achieved at the smaller maximal wavenumber. In these fluids, the optimal structure is a plume of warm rising fluid which spawns left/right horizontal arms near the top of the channel, leading to downdrafts adjacent to the central updraft. For $Pr > 7$ at high-enough Ra, the optimal structure is a single updraft absent significant horizontal structure, and characterized by the larger maximal wavenumber.
In this work we develop the Spectral Ewald Accelerated Stokesian Dynamics (SEASD), a novel computational method for dynamic simulations of polydisperse colloidal suspensions with full hydrodynamic interactions. SEASD is based on the framework of Stok
esian Dynamics (SD) with extension to compressible solvents, and uses the Spectral Ewald (SE) method [Lindbo & Tornberg, J. Comput. Phys. 229 (2010) 8994] for the wave-space mobility computation. To meet the performance requirement of dynamic simulations, we use Graphic Processing Units (GPU) to evaluate the suspension mobility, and achieve an order of magnitude speedup compared to a CPU implementation. For further speedup, we develop a novel far-field block-diagonal preconditioner to reduce the far-field evaluations in the iterative solver, and SEASD-nf, a polydisperse extension of the mean-field Brownian approximation of Banchio & Brady [J. Chem. Phys. 118 (2003) 10323]. We extensively discuss implementation and parameter selection strategies in SEASD, and demonstrate the spectral accuracy in the mobility evaluation and the overall $mathcal{O}(Nlog N)$ computation scaling. We present three computational examples to further validate SEASD and SEASD-nf in monodisperse and bidisperse suspensions: the short-time transport properties, the equilibrium osmotic pressure and viscoelastic moduli, and the steady shear Brownian rheology. Our validation results show that the agreement between SEASD and SEASD-nf is satisfactory over a wide range of parameters, and also provide significant insight into the dynamics of polydisperse colloidal suspensions.
Energy dissipation is highly intermittent in turbulent plasmas, being localized in coherent structures such as current sheets. The statistical analysis of spatial dissipative structures is an effective approach to studying turbulence. In this paper,
we generalize this methodology to investigate four-dimensional spatiotemporal structures, i.e., dissipative processes representing sets of interacting coherent structures, which correspond to flares in astrophysical systems. We develop methods for identifying and characterizing these processes, and then perform a statistical analysis of dissipative processes in numerical simulations of driven magnetohydrodynamic turbulence. We find that processes are often highly complex, long-lived, and weakly asymmetric in time. They exhibit robust power-law probability distributions and scaling relations, including a distribution of dissipated energy with power-law index near -1.75, indicating that intense dissipative events dominate the overall energy dissipation. We compare our results with the previously observed statistical properties of solar flares.