دفعت الشبكات العصبية العميقة باستمرار الأداء الحديث في معالجة اللغة الطبيعية ويعتبر نهج النمذجة في الواقع في حل مهام NLP المعقدة مثل الترجمة الآلية والتلخيص والرد على السؤال. على الرغم من الفعالية المثبتة للشبكات العصبية العميقة، فإن معرضهم هو سبب رئ
يسي للقلق. في هذا البرنامج التعليمي، سنقدم أعمال البحث في تفسير مكونات الرواية الدقيقة لطراز الشبكة العصبية من وجهات نظر، ط) ترجمة التفسير الدقيقة، والثاني) تحليل السببية. السابق هو فئة من الأساليب لتحليل الخلايا العصبية فيما يتعلق بمفهوم اللغة المطلوب أو مهمة. تدرس الأخير دور الخلايا العصبية وميزات المدخلات في شرح القرارات التي اتخذها النموذج. سنناقش أيضا كيف يمكن لأساليب التفسير وتحليل السببية الاتصال بتثبيته بشكل أفضل لتنبؤ النموذج. أخيرا، سوف نسير إليك من خلال مجموعة أدوات مختلفة تسهل تحليل التفسير والسبابة الراسخة من النماذج العصبية.
تصحيح الأخطاء المجردة نموذج تعلم الجهاز أمر صعب للغاية حيث يشمل الخطأ عادة بيانات التدريب وعملية التعلم.يصبح هذا أكثر صعوبة بالنسبة لطراز التعلم العميق غير المشفح إذا لم يكن لدينا أدنى فكرة عن كيفية عمل النموذج بالفعل.في هذا الاستطلاع، نراجع الأوراق
التي تستغلها تفسيرات لتمكين البشر من تقديم ملاحظات وتصحيح نماذج NLP.نسمي هذه المشكلة تصحيح الأخطاء البشرية القائم على التفسير (EBHD).على وجه الخصوص، نقوم بتصنيف وناقش العمل الحالي على طول ثلاثة أبعاد من EBHD (سياق الأخطاء، وسير العمل، والإعداد التجريبي)، تجميع النتائج حول كيفية تأثير مكونات EBHD على مقدمي التعليقات، وتسليط الضوء على المشاكل المفتوحة التي يمكن أن تكون اتجاهات بحثية في المستقبل.