Yu. I. Manin conjectured that the maximal abelian extensions of the real quadratic number fields are generated by the pseudo-lattices with real multiplication. We prove this conjecture using theory of measured foliations on the modular curves.
We show that any quantum family of maps from a non commutative space to a compact quantum metric space has a canonical quantum semi metric structure.
We characterize the projectors $ P $ on a Banach space $ E $ having the property of being connected to all the others projectors obtained as a conjugation of $ P $. Using this characterization we show an example of Banach space where the conjugacy cl
ass of a projector splits into several path-connected components, and describe the conjugacy classes of projectors onto subspaces of $ ell_poplusell_q $ with $ p eq q $.
We use a tensor C*-category with conjugates and two quasitensor functors into the category of Hilbert spaces to define a *-algebra depending functorially on this data. If one of them is tensorial, we can complete in the maximal C*-norm. A particular
case of this construction allows us to begin with solutions of the conjugate equations and associate ergodic actions of quantum groups on the C*-algebra in question. The quantum groups involved are A_u(Q) and B_u(Q).
For a generic set in the Teichmueller space, we construct a covariant functor with the range in a category of the AF-algebras; the functor maps isomorphic Riemann surfaces to the stably isomorphic AF-algebras. As a special case, one gets a categorica
l correspondence between complex tori and the so-called Effros-Shen algebras.
In our paper Essential normality, essential norms and hyperrigidity we claimed that the restriction of the identity representation of a certain operator system (constructed from a polynomial ideal) has the unique extension property, however the justi
fication we gave was insufficient. In this note we provide the required justification under some additional assumptions. Fortunately, homogeneous ideals that are sufficiently non-trivial are covered by these assumptions. This affects the section of our paper relating essential normality and hyperrigidity. We show here that Proposition 4.11 and Theorem 4.12 hold under the additional assumptions. We do not know if they hold in the generality considered in our paper.
We consider reproducing kernel Hilbert spaces of Dirichlet series with kernels of the form $k(s,u) = sum a_n n^{-s-bar u}$, and characterize when such a space is a complete Pick space. We then discuss what it means for two reproducing kernel Hilbert
spaces to be the same, and introduce a notion of weak isomorphism. Many of the spaces we consider turn out to be weakly isomorphic as reproducing kernel Hilbert spaces to the Drury-Arveson space $H^2_d$ in $d$ variables, where $d$ can be any number in ${1,2,ldots, infty}$, and in particular their multiplier algebras are unitarily equivalent to the multiplier algebra of $H^2_d$. Thus, a family of multiplier algebras of Dirichlet series are exhibited with the property that every complete Pick algebra is a quotient of each member of this family. Finally, we determine precisely when such a space of Dirichlet series is weakly isomorphic to $H^2_d$ and when its multiplier algebra is isometrically isomorphic to $Mult(H^2_d)$.
We study the external and internal Zappa-Szep product of topological groupoids. We show that under natural continuity assumptions the Zappa-Szep product groupoid is etale if and only if the individual groupoids are etale. In our main result we show t
hat the C*-algebra of a locally compact Hausdorff etale Zappa-Szep product groupoid is a C*-blend, in the sense of Exel, of the individual groupoid C*-algebras. We finish with some examples, including groupoids built from *-commuting endomorphisms, and skew product groupoids.
We prove that every unital stably finite simple amenable $C^*$-algebra $A$ with finite nuclear dimension and with UCT such that every trace is quasi-diagonal has the property that $Aotimes Q$ has generalized tracial rank at most one, where $Q$ is the
universal UHF-algebra. Consequently, $A$ is classifiable in the sense of Elliott.