نماذج تتبع حكومية الحوار تلعب دورا مهما في نظام حوار موجه نحو المهام.ومع ذلك، فإن معظمهم يصطادون أنواع الفتحات بشكل مشروط بإدخال المدخلات بشكل مشروط.نكتشف أنه قد يتسبب في الخلط النموذج من خلال أنواع الفتحات التي تشترك في نفس نوع البيانات.لتخفيف هذه ا
لمشكلة، نقترح Trippy-MRF و Trippy-LSTM النماذج التي تطرح الفتحات بشكل مشترك.تظهر نتائجنا أنهم قادرون على تخفيف الارتباك المذكور أعلاه، ويدفعون الحديث في DataSet MultiWoz 2.1 من 58.7 إلى 61.3.
تتضمن الأساليب الحديثة الحديثة في حوار المجال المفتوح نماذج التعليم العميق في نهاية إلى نهج لتعلم العديد من ميزات المحادثة مثل المحتوى العاطفي للاستجابة، والانتقال الرمز الرمزي سياقات الحوار في الرسم البياني المعرفي وشخصية الوكيل والمستخدم، من بين آخ
رين. في حين أن النماذج العصبية قد أظهرت نتائج معقولة، فإن نمذجة العمليات المعرفية التي يستخدمها البشر عند التحدث مع بعضهم البعض تحسين جودة الوكيل للردود. يتمثل عنصر رئيسي في المحادثة الطبيعية في تكييف استجابة المرء بحيث يمثل المفاهيم التي يجوز لها السماعة والمستمع بها أو قد لا يعرفها وأهمية السياق لجميع المفاهيم السابقة المستخدمة في المحادثة. نظرا لأن تمثيل غني ونمذجة صريحة لهذه العمليات النفسية يمكن أن تحسن التنبؤات التي قدمتها نماذج الشبكة العصبية الحالية. في هذا العمل، نقترح نهجا احتمالا جديدا باستخدام حقول Markov العشوائية (MRF) لزيادة طرق التعلم العميق الموجودة لتحسين التنبؤ القادم للكلام. باستخدام التقييمات البشرية والآلية، نظير على أن نهجنا للتكبير لدينا يحسن بشكل كبير من أداء نماذج استرجاع الحالة القائمة من أحدث الوكلاء المحادثة للمجموعات المفتوحة.