ترغب بنشر مسار تعليمي؟ اضغط هنا

تحليل Coreference Event Dockence (CDCR) هي مهمة تحديد الأحداث التي تشير إلى نفس الأحداث طوال مجموعة من المستندات. تعد شرح بيانات CDCR عملية شاقة ومكلفة، موضحا سبب وجود كورسا الموجودة صغيرة وتفتقر إلى تغطية المجال. للتغلب على هذه الاختناق، نستخلك تلقا ئيا بيانات Coreference من الارتباطات التشعبية في الأخبار عبر الإنترنت: عند الإشارة إلى حدث كبير في العالم الحقيقي، غالبا ما يقوم الكتاب في كثير من الأحيان بإضافة ارتباط تشعبي إلى مقالة أخرى تغطي هذا الحدث. نوضح أن جمع الارتباطات التشعبية التي تشير إلى نفس المقالة (الأقوالية) تنتج بيانات CDCR واسعة عالية الجودة وإنشاء كائن من وثائق 2M وذكر الحدث الفضي القياسي 2.7M يسمى HyperCoref. نقيم نظام أحدث على ثلاثة CDCR Corpora ويجد أن النماذج المدربة على مجموعات فرعية صغيرة من Hypercoref تنافسية للغاية، مع أداء مشابه للنماذج المدربة على البيانات الذهبية القياسية. مع عملنا، نقوم بحرية بحث CDCR من اعتمادا على بيانات التدريب المكلفة المشروح البشرية وتفتتح إمكانيات للبحث عن البحوث بعد أن يتم تكييف نهج استخراج البيانات لدينا بسهولة مع لغات أخرى.
تعد دقة Coureference Event مشكلة بحثية مهمة في العديد من التطبيقات.على الرغم من النجاح الرائع الأخير للنماذج اللغوية المدربة مسبقا، فإننا نجادل بأنه لا يزال مفيدا للغاية لاستخدام الميزات الرمزية للمهمة.ومع ذلك، نظرا لأن المدخلات لتحليل Aquerence عادة ما تأتي من مكونات المنبع في خط أنابيب استخراج المعلومات، فإن الميزات الرمزية المستخرجة تلقائيا يمكن أن تكون صاخبة وأن تحتوي على أخطاء.أيضا، اعتمادا على السياق المحدد، يمكن أن تكون بعض الميزات أكثر إفادة من غيرها.بدافع من هذه الملاحظات، نقترح وحدة نمطية معتمدة على السياق على الرواية السيطرة على تدفق المعلومات من ميزات المدخلات الرمزية.جنبا إلى جنب مع طريقة تدريب صاخبة بسيطة، فإن أفضل طرازات لدينا تحقق نتائج أحدث من الفنون على مجموعة بيانات: ACE 2005 و KBP 2016.
تدرس هذه الورقة مشكلة دقة Aquerence Aquerence Coursence (CDE) التي تسعى إلى تحديد ما إذا كان يذكر الحدث عبر مستندات متعددة تشير إلى نفس الأحداث في العالم الحقيقي.أظهر العمل المسبق فوائد معلومات الوسائد وسياق الوثيقة لحل فور معلومات الحدث.ومع ذلك، لم يتم التقاط هذه المعلومات بفعالية في العمل السابق ل CDECR.لمعالجة هذه القيود، نقترح نموذجا تعليميا عميقا جديدا ل CDEG الذي يقدم الرصاص الهرمي للشبكات العصبية التنافعية (GCN) إلى إشراف الكيان والحكام المشترك.على هذا النحو، تمكن GCNs مستوى الجملة من ترميز كلمات السياق المهمة لذكر الحدث وحججها بينما يهدف GCN على مستوى المستند إلى تذكر هياكل التفاعل الحدث والحجج لحساب تمثيلات الوثيقة لأداء CDU.يتم إجراء تجارب واسعة لإظهار فعالية النموذج المقترح.
دقة Aqueference Coreference Coreence هي مهمة مؤسسية لتطبيقات NLP التي تنطوي على معالجة النص المتعدد. ومع ذلك، فإن شركة كوربيا الحالية لهذه المهمة نادرة وصغيرة نسبيا، بينما تعلق فقط مجموعات من المستندات المتواضعة فقط من الوثائق التي تنتمي إلى نفس المو ضوع. لاستكمال هذه الموارد وتعزيز البحوث المستقبلية، نقدم حفل الحدث في ويكيبيديا (WEC)، وهي منهجية فعالة لجمع مجموعة بيانات واسعة النطاق لحدث الحدث عبر المستندات من ويكيبيديا، حيث لا يتم تقييد روابط Coreference داخل مواضيع محددة مسبقا. نحن نطبق هذه المنهجية على Wikipedia الإنجليزية واستخراج مجموعة بيانات WEC-ENG الواسعة النطاق. وخاصة، طريقة إنشاء DataSet لدينا عام ويمكن تطبيقها مع القليل من الجهود الأخرى لغات ويكيبيديا الأخرى. لضبط نتائج خط الأساس، نقوم بتطوير خوارزمية تتكيف مع مكونات النماذج الحديثة في دقة COMERACARY داخل الوثيقة إلى إعداد المستندات عبر المستندات. النموذج لدينا هو فعال بشكل مناسب وتفوق النتائج التي تم نشرها سابقا من النتائج التي تم نشرها مسبقا للمهمة.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا