ترغب بنشر مسار تعليمي؟ اضغط هنا

شاركنا في جميع المسارات لمهمة الترجمة الآلية ل WMT 2021: وحدة المعالجة المركزية ذات CPU أحادية النواة، وحدة المعالجة المركزية متعددة النواة، وأجهزة GPU مع شروط الإنتاجية والكمولية.تجمع تقاريرنا العديد من استراتيجيات الكفاءة: تقطير المعرفة، وحدة فك تر ميز وحدة بسيطة متكررة بسيطة (SSRU) مع طبقتين أو طبقتين، بقلين من المعجمين، وتنسيقات عدودية أصغر، وتقليم.بالنسبة لمسار وحدة المعالجة المركزية، استخدمنا طرازات 8 بت كمية.بالنسبة لمسار GPU، جربنا أعداد صحيحة FP16 و 8 بت في عشرات الموانئ.بعض عمليات التقديمات لدينا تحسين الحجم عبر سجل سجل 4 بت وحذف قائمة مختصرة معجمية.لقد مددنا تشذيم أكبر أجزاء من الشبكة، مع التركيز على تشذيب المكونات ومستوى الحظر الذي يحسن في الواقع السرعة على عكس تقليم المعامل الحكيم.
في هذا العمل، نعتبر مشكلة تصميم أطر تعليمية آمنة وفعالة (FLF) ل NLP.الحلول القائمة تحت هذه الأدبيات إما النظر في مجمع موثوق أو تتطلب بدائريات تشفير ثقيلة الوزن، مما يجعل الأداء يتدهور بشكل كبير.علاوة على ذلك، تعمل العديد من تصاميم FL FL Secure الموجو دة فقط بموجب الافتراض التقييدي الذي يمكن إسقاط أي منهما من بروتوكول التدريب.لمعالجة هذه المشكلات، نقترح SEFL، وهو إطار تعليمي آمن وفعال في الفيدروس (1) يلغي الحاجة إلى الكيانات الموثوق بها؛(2) يحقق دقة نموذجية مماثلة وحتى أفضل مقارنة بتصميمات فلوريدا الحالية؛(3) مرن للتسربين العميل.
بعد نجاح اهتمام DOT-Product في المحولات، تم اقتراح تقريب عديدة مؤخرا لمعالجة تعقيدها التربيعي فيما يتعلق بطول الإدخال. في حين أن هذه المتغيرات هي الذاكرة وتحسب كفاءة، فمن غير الممكن استخدامها مباشرة مع نماذج اللغة المدربة مسبقا مسبقا تدربت باستخدام ا هتمام الفانيليا، دون مرحلة ما قبل التدريب التصحيحية باهظة الثمن. في هذا العمل، نقترح تقريب بسيط ولكن دقيق للغاية لاهتمام الفانيليا. نقوم بمعالجة الاستعلامات في قطع، ولكل عملية استعلام، حساب أعلى الدرجات * K * فيما يتعلق بالمفاتيح. يوفر نهجنا عدة مزايا: (أ) استخدام ذاكرةه خطي في حجم الإدخال، على غرار متغيرات الانتباه الخطي، مثل أداء و RFA (B) هو استبدال انخفاض في انتباه الفانيليا الذي لا يتطلب أي تصحيحية -إجراء (ج) يمكن أن يؤدي أيضا إلى وفورات كبيرة في الذاكرة في طبقات الأعلاف إلى الأمام بعد إلقاءها في إطار القيمة المألوفة ذات القيمة الرئيسية. نحن نقيم جودة أعلى - * K * تقريب طبقات الاهتمام متعدد الأطراف على أساس الساحة الطويلة المدى، وللطبقات التغذية من T5 و unifectqa على مجموعات بيانات QA متعددة. نظرا لأن نهجنا يؤدي إلى الدقة التي تظل مما يقرب من انتباه الفانيليا في إكمال متعددة بما في ذلك التدريب من الصفر والضبط الناعم والاستدلال بالرصاص الصفر.
بعد أداء متزايد لأنظمة الترجمة الآلية العصبية، تتم الآن دراسة نموذج استخدام البيانات المترجمة تلقائيا للتكيف عبر اللغات في العديد من المجالات المعمارية.لا تزال القدرة على شرح المشروع بدقة، ومع ذلك، فإن هناك مشكلة في مهام علامات التسلسل حيث يجب توقع ا لتوضيح بالمسافة الصحيحة.بالإضافة إلى ذلك، عندما تعني المهمة النص الناتج عن المستخدم صاخبة، يمكن أن تتأثر جودة الترجمة والترجمة التوضيحية.في هذه الورقة نقترحنا معالجة تسلسل تسلسل متعدد اللغات مع طريقة محاذاة سبين جديدة وتطبيقها على استخراج هدف الرأي من مراجعات العملاء.نظرا لأن توفير الاستدلال المناسبة، فإن البيانات المترجمة مع الإسقاط التلقائي التلقائي من المستوى التلقائي يمكن أن تسفر عن تحسينات التكيف عبر اللغات مقارنة بنقل الرصاص الصفر، وتعزيز البيانات مقارنة بناس خطي متعدد اللغات.
يمكن أن تسترجع إمكانات المطابقة الدلالية لاسترجاع المعلومات العصبية مشاكل المرادفات والبوليزيميمي من الأساليب الرمزية.ومع ذلك، فإن التمثيلات الكثيفة النماذج العصبية أكثر ملاءمة لإعادة الترتيب، بسبب عدم كفاءةها.تمثيلات متفرق، إما في شكل رمزي أو كامن، أكثر كفاءة مع مؤشر مقلوب.أخذ مزايا التمثيلات المتناثرة والكثيفة، نقترح مخطط تمثيل ثنائي الأبعاد للغاية (UHD) مجهز بمرضية يمكن السيطرة عليها مباشرة.سعة UHD الكبيرة والحد الأدنى من الضوضاء والتدخل بين الأبعاد تسمح بالتمثيل الثنائي، والتي تعتبر فعالة للغاية للتخزين والبحث.المقترح أيضا طريقة دلامية، حيث يتم اختيار / دمج الأشرطة من طبقات متعددة من بيرت / دمجها لتمثيل الجوانب اللغوية المتنوعة.نقوم باختبار نماذجنا باستخدام سيارة MS MARCO و TREC، والتي تبين أن نماذجنا تفوقت على نماذج غير متفرقة أخرى.
تم دراسة ضغط الجملة (SC)، التي تهدف إلى تقصير الأحكام مع الاحتفاظ بكلمات مهمة تعبر عن المعاني الأساسية، لسنوات عديدة في العديد من اللغات، خاصة باللغة الإنجليزية. ومع ذلك، فإن التحسينات في مهمة SC الصينية لا تزال قليلة جدا بسبب العديد من الصعوبات: ناد رة من كوربورا الموازية، وتحبيب تجزئة مختلفة من الجمل الصينية، والأداء غير الكامل للتحليلات النحوية. علاوة على ذلك، تم التحقيق في نماذج SC الصينية بأكملها حتى الآن. في هذا العمل، نبني مجموعة بيانات SC من الجمل العامية الصينية من نظام الإجابة على مدى واقعية في مجال الاتصالات السلكية واللاسلكية، ثم نقترح نموذج صيني عصبي SC معزز مع خريطة تنظيم ذاتية (SOM-NCSCM)، إلى احصل على رؤية قيمة من البيانات وتحسين أداء نموذج SC الصيني العصبي بأكمله بطريقة صالحة. تظهر النتائج التجريبية أننا يمكن أن تستفيد بشكل كبير من التحقيق العميق في التشابه بين البيانات، وتحقيق درجة F1 واعدة قدرها 89.655 وفرز Bleu4 البالغة 70.116، والتي توفر أيضا خط أساس لمزيد من الأبحاث حول مهمة SC الصينية.
على الرغم من الأداء الرائع للنماذج التوليدية واسعة النطاق في محادثة مفتوحة، من المعروف أنها أقل عملية لبناء أنظمة محادثة في الوقت الفعلي بسبب ارتفاع الكمون. من ناحية أخرى، يمكن أن تعيد نماذج استرجاع الردود بأشياء أقل بكثير ولكنها تظهر أداء أدنى للنما ذج الإدارية على نطاق واسع لأن جودة المحادثة تحدها مجموعة استجابة محددة مسبقا. للاستفادة من كلتا النهجين، نقترح طريقة تدريب جديدة تسمى G2R (التقطير الاسترجلي من الاسترجاع) التي تحافظ على كفاءة نموذج استرجاع مع الاستفادة من القدرة على التحدث نموذجا إيديا واسع النطاق عن طريق غرس المعرفة بالتوليد نموذج في نموذج الاسترجاع. تتكون G2R من تقنيتين متميزتين من التقطير: يعزز G2R على مستوى البيانات مجموعة بيانات الحوار مع ردود إضافية النموذج المولد النطاق، وينقل G2R على مستوى النموذج درجة جودة الاستجابة التي تم تقييمها بواسطة نموذج التوليد إلى درجة نموذج الاسترجاع عن طريق فقدان المعرفة في التقطير. من خلال تجارب واسعة بما في ذلك التقييم البشري، نوضح أن نظام المحادثة المستندة إلى استرجاعنا المدربين مع G2R يدل على أداء محسن بشكل كبير مقارنة بنموذج استرجاع الأساس أثناء إظهار زمن الاستدلال الأساسي بشكل كبير من النماذج الإدارية على نطاق واسع.
في هذا العمل، نستكشف ضبط موجه، "آلية بسيطة ولكنها فعالة لتعلم المطالبات الناعمة" لحالة نماذج اللغة المجمدة لتنفيذ مهام المصب المحددة. على عكس مطالبات النص المنفصلة المستخدمة من قبل GPT-3، يتم تعلم المطالبات الناعمة من خلال إعادة الاتصال ويمكن ضبطها ل دمج الإشارات من أي عدد من الأمثلة المسمى. يتفوق نهجنا المستفاد من طرفي تنضم إلى التعلم القليل من GPT-3 لهامش كبير. بشكل ملحوظ، من خلال ablations على حجم النموذج باستخدام T5، نظهر أن الضبط الفوري يصبح أكثر تنافسية على نطاق الحجم: نظرا لأن النماذج تتجاوز مليارات المعلمات، فإن طريقتنا تغلق الفجوة "وتطابق الأداء القوي لضبط النموذج (حيث جميع الأوزان النموذجية ضبطها). هذه النتيجة ذات صلة خاصة لأن النماذج الكبيرة مكلفة للمشاركة والخدمة والقدرة على إعادة استخدام نموذج واحد مجمد لمهام متعددة المصب يمكن أن تخفف من هذا العبء. يمكن اعتبار طريقةنا بمثابة تبسيط لضبط البادئة المقترح مؤخرا "لى ولديانغ (2021) ونوفر مقارنة بهذه الطريقة وغيرها من الأساليب المماثلة. أخيرا، نظهر أن تكييف نموذج مجمد مع مطالبات ناعمة يمنح الفوائد في متانة نقل المجال وتمكين الكفاءة الفعالة من الفئة الفعالة. "نحن ندرك رمز نقاط التفتيش والنموذج لإعادة إنتاج تجاربنا.
تشبه مهمة تبسيط نص الوثيقة على مستوى المستندات إلى صعوبة تقليل التعقيد الإضافي.نقدم مجموعة بيانات مجمعة حديثا من النصوص الألمانية، التي تم جمعها من مجلة Swiss News 20 Minuten (20 دقيقة) والتي تتكون من مقالات كاملة مقررة مع ملخصات مبسطة.علاوة على ذلك، نقدم تجارب على تبسيط النص التلقائي مع MBART MBART متعددة اللغات المسبدة مسبقا ونسخة معدلة منها أكثر صديقة للذاكرة، باستخدام كل من مجموعة البيانات الجديدة والتبسيط الموجودة Corpora.تتيح لنا تعديلات MBArt التدريب بتكلفة أقل في الذاكرة دون فقدان الكثير من الخسارة في الأداء، في الواقع، فإن MBART أصغر يحسن حتى النموذج القياسي في إعداد مع مستويات تبسيط متعددة.
المحولات هي وحدات خفيفة الوزن تسمح بضبط النماذج الدقيقة التي يتمتع بها المعلمة. تم اقتراح محولات اللغة والمهمة المتخصصة مؤخرا لتسهيل التحويل عبر اللغات للنماذج المحددة متعددة اللغات (Pfeiffer et al.، 2020b). ومع ذلك، يتطلب هذا النهج تدريب محول لغة من فصل لكل لغة ترغب في الدعم، مما قد يكون غير صحيح لغات مع بيانات محدودة. الحل البديهي هو استخدام محول لغة ذات صلة لتنوع اللغات الجديدة، لكننا نلاحظ أن هذا الحل يمكن أن يؤدي إلى الأداء دون الأمثل. في هذه الورقة، نهدف إلى تحسين متانة المحولات اللغوية باللغات غير المكشوفة دون تدريب محولات جديدة. نجد أن الكشف عن محولات متعددة اللغات متعددة يجعل النموذج الدقيق أكثر قوة أكثر بكثير من أصناف اللغة الأخرى غير المدرجة في هذه المحولات. بناء على هذه الملاحظة، نقترح Entropy Minimized Entermble of Adrapters (EMEA)، وهي طريقة تعمل على تحسين أوزان مجموعة محولات اللغة المحددة مسبقا لكل جملة اختبار عن طريق تقليل انتروبيا من تنبؤاتها. تبين التجارب في ثلاث مجموعات متنوعة من الأصناف اللغوية أن طريقتنا تؤدي إلى تحسينات كبيرة على كل من الاعتراف الكياري المسمى ووضع علامات جزء من الكلام في جميع اللغات.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا