ترغب بنشر مسار تعليمي؟ اضغط هنا

أثارت نماذج اللغة المدربة مسبقا مقرها الانتباه مثل GPT-2 تقدما كبيرا لنمذجة حوار نهاية إلى نهاية.ومع ذلك، فإنهم يقدمون أيضا مخاطر كبيرة للحوار الموجهة إلى المهام، مثل عدم وجود أسس المعرفة أو التنوع.لمعالجة هذه القضايا، نقدم أهداف تدريبية معدلة لنموذج اللغة Finetuning، ونحن نوظف تكبير بيانات ضخمة عبر الترجمة الخلفي لزيادة تنوع بيانات التدريب.ندرس إمكانيات الجمع بين البيانات من مصادر مضاعفات تحسين الأداء على مجموعة البيانات المستهدفة.نحن نقيم بعناية مساهماتنا مع كل من الأساليب البشرية والآلية.يتفوق نموذجنا بشكل كبير على خط الأساس على بيانات MultiWoz ويظهر أداء تنافسي مع حالة الفن في كل من التقييم التلقائي والإنساني.
يتم تعريف مهمة الكشف عن الفقاعات السامة (TSD) على أنها تسليط الضوء على يمتد يمتد النص السام.تم إجراء العديد من الأعمال لتصنيف تعليق أو وثيقة معينة على أنها سامة أو غير سامة.ومع ذلك، لا تعمل أي من هذه النماذج المقترحة على مستوى الرمز المميز.في هذه الو رقة، نقترح وحدة متكررة ثنائية الاهتمام بالانتباه (BIGRU) مع تمثيل متعدد التضمين للرموز.يثري نموذجنا المقترح التمثيل بمزيج من GPT-2، قفاز، و Aroperta Ageddings، مما أدى إلى نتائج واعدة.تظهر النتائج التجريبية أن نهجنا المقترح فعال للغاية في الكشف عن الرموز المميزة.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا