ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the evolution of the Universe at early stages, we discuss also preheating in the framework of hybrid braneworld inflation by setting conditions on the coupling constants $lambda $ and $g$ for effective production of $chi$-particles. Consider ing the phase between the time observable CMB scales crossed the horizon and the present time, we write reheating and preheating parameters $N_{re}$, $T_{re}$ and $N_{pre}$ in terms of the scalar spectral index $n_{s}$, and prove that, unlike the reheating case, the preheating duration does not depend on the values of the equation of state $omega ^{ast }$. We apply the slow-roll approximation in the high energy limit to constrain the parameters of D-term hybrid potential. We show also that some inflationary parameters, in particular, the spectral index $n_{s}$ demand that the potential parameter $alpha$ is bounded as $alpha geq 1$ to be consistent with $Planck$s data, while the ratio $r$ is in agreement with observation for $ alpha leq 1 $ considering high inflationary e-folds. We also propose an investigation of the brane tension effect on the reheating temperature. Comparing our results to recent CMB measurements, we study preheating and reheating parameters $N_{re}$, $T_{re}$ and $N_{pre}$ in the Hybrid D-term inflation model in the range $0.8leq alphaleq 1.1$, and conclude that $T_{re}$ and $N_{re}$ require $alpha leq 1$, while for $N_{pre}$ the condition $alpha leq 0.9$ must be satisfied, to be compatible with $Planck$s results.
We introduce a novel statistic to probe the statistics of phases of Fourier modes in two-dimensions (2D) for weak lensing convergence field $kappa$. This statistic contains completely independent information compared to that contained in observed pow er spectrum. We compare our results against state-of-the-art numerical simulations as a function of source redshift and find good agreement with theoretical predictions. We show that our estimator can achieve better signal-to-noise compared to the commonly employed statistics known as the line correlation function (LCF). Being a two-point statistics, our estimator is also easy to implement in the presence of complicated noise and mask, and can also be generalised to higher-order. While applying this estimator for the study of lensed CMB maps, we show that it is important to include post-Born corrections in the study of statistics of phase.
Galaxy clusters grow primarily through the continuous accretion of group-scale haloes. Group galaxies experience preprocessing during their journey into clusters. A star-bursting compact group, the Blue Infalling Group (BIG), is plunging into the nea rby cluster A1367. Previous optical observations reveal rich tidal features in the BIG members, and a long H$alpha$ trail behind. Here we report the discovery of a projected $sim 250$ kpc X-ray tail behind the BIG using Chandra and XMM-Newton observations. The total hot gas mass in the tail is $sim 7times 10^{10} {rm M}_odot$ with an X-ray bolometric luminosity of $sim 3.8times 10^{41}$ erg s$^{-1}$. The temperature along the tail is $sim 1$ keV, but the apparent metallicity is very low, an indication of the multi-$T$ nature of the gas. The X-ray and H$alpha$ surface brightnesses in the front part of the BIG tail follow the tight correlation established from a sample of stripped tails in nearby clusters, which suggests the multiphase gas originates from the mixing of the stripped interstellar medium (ISM) with the hot intracluster medium (ICM). Because thermal conduction and hydrodynamic instabilities are significantly suppressed, the stripped ISM can be long lived and produce ICM clumps. The BIG provides us a rare laboratory to study galaxy transformation and preprocessing.
Lorentz Invariance Violation in Quantum Gravity (QG) models or a non-zero photon mass, $m_gamma$, would lead to an energy-dependent propagation speed for photons, such that photons of different energies from a distant source would arrive at different times, even if they were emitted simultaneously. By developing source-by-source, Monte Carlo-based forward models for such time delays from Gamma Ray Bursts, and marginalising over empirical noise models describing other contributions to the time delay, we derive constraints on $m_gamma$ and the QG length scale, $ell_{rm QG}$, using spectral lag data from the BATSE satellite. We find $m_gamma < 4.0 times 10^{-5} , h , {rm eV}/c^2$ and $ell_{rm QG} < 5.3 times 10^{-18} , h , {rm , GeV^{-1}}$ at 95% confidence, and demonstrate that these constraints are robust to the choice of noise model. The QG constraint is among the tightest from studies which consider multiple Gamma Ray Bursts and the constraint on $m_gamma$, although weaker than from using radio data, provides an independent constraint which is less sensitive to the effects of dispersion by electrons.
The eFEDS survey is a proof-of-concept mini-survey designed to demonstrate the survey science capabilities of SRG/eROSITA. It covers an area of 140 square degrees where 542 galaxy clusters have been detected out to a redshift of 1.3. The eFEDS field is partly embedded in the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) S19A data release, which covers 510 square degrees, containing approximately 36 million galaxies. This galaxy catalogue is used to construct a sample of 180 shear-selected galaxy clusters. In the common area to both surveys, about 90 square degrees, we investigate the effects of selection methods in the galaxy cluster detection by comparing the X-ray selected, eFEDS, and the shear-selected, HSC-SSP S19A, galaxy cluster samples. There are 25 shear-selected clusters in the eFEDS footprint. The relation between X-ray bolometric luminosity and weak-lensing mass is investigated, and it is found that the normalization of the bolometric luminosity and mass relation of the X-ray selected and shear-selected samples is consistent within $1sigma$. Moreover, we found that the dynamical state and merger fraction of the shear-selected clusters is not different from the X-ray selected ones. Four shear-selected clusters are undetected in X-rays. A close inspection reveals that one is the result of projection effects, while the other three have an X-ray flux below the ultimate eROSITA detection limit. Finally, 43% of the shear-selected clusters lie in superclusters. Our results indicate that the scaling relation between X-ray bolometric luminosity and true cluster mass of the shear-selected cluster sample is consistent with the eFEDS sample. There is no significant population of X-ray underluminous clusters, indicating that X-ray selected cluster samples are complete and can be used as an accurate cosmological probe.
146 - Casey McGrath 2021
Pulsar timing experiments are currently searching for gravitational waves, and this dissertation focuses on the development and study of the pulsar timing residual models used for continuous wave searches. The first goal of this work is to re-present much of the fundamental physics and mathematics concepts behind the calculations and theory used in pulsar timing. While there exist many reference sources in the literature, I try to offer a fully self-contained explanation of the fundamentals of this research which I hope the reader will find helpful. The next goal broadly speaking has been to further develop the mathematics behind the currently used pulsar timing models for detecting gravitational waves with pulsar timing experiments. I classify four regimes of interest, governed by frequency evolution and wavefront curvature effects incorporated into the timing residual models. Of these four regimes the plane-wave models are well established in previous literature. I add a new regime which I label Fresnel, as I show it becomes important for significant Fresnel numbers describing the curvature of the gravitational wavefront. Then I give two in-depth studies. The first forecasts the ability of future pulsar timing experiments to probe and measure these Fresnel effects. The second further generalizes the models to a cosmologically expanding universe, and I show how the Hubble constant can be measured directly in the most generalized pulsar timing residual model. This offers future pulsar timing experiments the possibility of being able to procure a purely gravitational wave-based measurement of the Hubble constant. The final chapter shows the initial steps taken to extend this work in the future toward Doppler tracking experiments.
Disc-halo decomposition on rotationally supported star-forming galaxies (SFGs) at $z>1$ are often limited to massive galaxies ($M_star>10^{10}~M_odot$) and rely on either deep Integral Field Spectroscopy data or stacking analyses. We present a study of the dark matter (DM) content of 9 $zapprox1$ SFGs selected Using the brightest [OII] emitters in the deepest Multi-Unit Spectrograph Explorer (MUSE) field to date, namely the 140hr MUSE Extremely Deep Field, we perform disk-halo decompositions on 9 low-mass SFGs (with $10^{8.5}<M_star<10^{10.5}~M_odot$) using a novel 3D modeling approach, which together with the exquisite S/N allows us to measure individual rotation curves to $3times R_e$. The DM component primarily uses the generalized $alpha,beta,gamma$ profile from Di Cintio et al., or a Navarro-Frenk-White (NFW) profile. The disk stellar masses $M_star$ obtained from the [OII] disk-halo decomposition agree with the values inferred from the spectral energy distributions. While the rotation curves show diverse shapes, ranging from rising to declining at large radii, the DM fractions within the half-light radius $f_{rm DM}(<R_e)$ are found to be 60% to 95%, extending to lower masses (densities) the results of Genzel et al., who found low DM fractions in SFGs with $M_star>10^{10}~M_odot$. The DM halos show constant surface densities of $sim100~M_odot$ pc$^{-2}$. Half of the sample shows a strong preference for cored over cuspy DM profiles. The presence of DM cores appears to be related to galaxies with stellar-to-halo mass $log M_star/M_{rm vir}approx-2.5$. In addition, the cuspiness of the DM profiles is found to be a strong function of the recent star-formation activity. Both of these results are interpreted as evidence for feedback-induced core formation in the Cold Dark Matter context.
We investigate a recently proposed method for measuring the Hubble constant from gravitational wave detections of binary black hole coalescences without electromagnetic counterparts. In the absence of a direct redshift measurement, the missing inform ation on the left-hand side of the Hubble-Lema^itre law is provided by the statistical knowledge on the redshift distribution of sources. We assume that source distribution in redshift depends on just one unknown hyper-parameter, modeling our ignorance of the astrophysical binary black hole distribution. With tens of thousands of these black sirens -- a realistic figure for the third generation detectors Einstein Telescope and Cosmic Explorer -- an observational constraint on the value of the Hubble parameter at percent level can be obtained. This method has the advantage of not relying on electromagnetic counterparts, which accompany a very small fraction of gravitational wave detections, nor on often unavailable or incomplete galaxy catalogs.
We examine the prospects for measurement of the Hubble parameter $H_0$ via observation of the secular parallax of other galaxies due to our own motion relative to the cosmic microwave background rest frame. Peculiar velocities make distance measureme nts to individual galaxies highly uncertain, but a survey sampling many galaxies can still yield a precise $H_0$ measurement. We use both a Fisher information formalism and simulations to forecast errors in $H_0$ from such surveys, marginalizing over the unknown peculiar velocities. The optimum survey observes $sim 10^2$ galaxies within a redshift $z_mathrm{max}=0.05$. The required errors on proper motion are comparable to those that can be achieved by Gaia and future astrometric instruments. A measurement of $H_0$ via parallax has the potential to shed light on the tension between different measurements of $H_0$.
Using the Reduced Relativistic Gas (RRG) model, we analytically determine the matter power spectrum for Warm Dark Matter (WDM) on small scales, $k>1 htext{/Mpc}$. The RRG is a simplified model for the ideal relativistic gas, but very accurate in the cosmological context. In another work, we have shown that, for typical allowed masses for dark matter particles, $m>5 text{keV}$, the higher order multipoles, $ell>2$, in the Einstein-Boltzmann system of equations are negligible on scales $k<10 htext{/Mpc}$. Hence, we can follow the perturbations of WDM using the ideal fluid framework, with equation of state and sound speed of perturbations given by the RRG model. We derive a Meszaros like equation for WDM and solve it analytically in radiation, matter and dark energy dominated eras. Joining these solutions, we get an expression that determines the value of WDM perturbations as a function of redshift and wavenumber. Then we construct the matter power spectrum and transfer function of WDM on small scales and compare it to some results coming from Lyman-$alpha$ forest observations. Besides being a clear and pedagogical analytical development to understand the evolution of WDM perturbations, our power spectrum results are consistent with the observations considered and the other determinations of the degree of warmness of dark matter particles.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا