ترغب بنشر مسار تعليمي؟ اضغط هنا

The eROSITA Final Equatorial-Depth Survey (eFEDS): A complete census of X-ray properties of Subaru Hyper Suprime-Cam weak lensing shear-selected clusters in the eFEDS footprint

155   0   0.0 ( 0 )
 نشر من قبل Miriam Elizabeth Ramos-Ceja
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The eFEDS survey is a proof-of-concept mini-survey designed to demonstrate the survey science capabilities of SRG/eROSITA. It covers an area of 140 square degrees where 542 galaxy clusters have been detected out to a redshift of 1.3. The eFEDS field is partly embedded in the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) S19A data release, which covers 510 square degrees, containing approximately 36 million galaxies. This galaxy catalogue is used to construct a sample of 180 shear-selected galaxy clusters. In the common area to both surveys, about 90 square degrees, we investigate the effects of selection methods in the galaxy cluster detection by comparing the X-ray selected, eFEDS, and the shear-selected, HSC-SSP S19A, galaxy cluster samples. There are 25 shear-selected clusters in the eFEDS footprint. The relation between X-ray bolometric luminosity and weak-lensing mass is investigated, and it is found that the normalization of the bolometric luminosity and mass relation of the X-ray selected and shear-selected samples is consistent within $1sigma$. Moreover, we found that the dynamical state and merger fraction of the shear-selected clusters is not different from the X-ray selected ones. Four shear-selected clusters are undetected in X-rays. A close inspection reveals that one is the result of projection effects, while the other three have an X-ray flux below the ultimate eROSITA detection limit. Finally, 43% of the shear-selected clusters lie in superclusters. Our results indicate that the scaling relation between X-ray bolometric luminosity and true cluster mass of the shear-selected cluster sample is consistent with the eFEDS sample. There is no significant population of X-ray underluminous clusters, indicating that X-ray selected cluster samples are complete and can be used as an accurate cosmological probe.



قيم البحث

اقرأ أيضاً

We present the first weak-lensing mass calibration and X-ray scaling relations of galaxy clusters and groups selected in the $eROSITA$ Final Equatorial Depth Survey (eFEDS) observed by Spectrum Roentgen Gamma/$eROSITA$ over a contiguous footprint wit h an area of $approx140$ deg$^2$, using the three-year (S19A) weak-lensing data from the Hyper Suprime-Cam (HSC) Subaru Strategic Program survey. In this work, a sample of $434$ optically confirmed galaxy clusters (and groups) at redshift $0.01lesssim z lesssim1.3$ with a median of $0.35$ is studied, of which $313$ systems are uniformly covered by the HSC survey to enable the extraction of the weak-lensing shear observable. In a Bayesian population modelling, we perform a blind analysis for the weak-lensing mass calibration by simultaneously modelling the observed count rate $eta$ and the shear profile $g$ of individual clusters through the count rate-to-mass-and-redshift ($eta$--$M_{500}$--$z$) and weak-lensing mass-to-mass-and-redshift ($M_{mathrm{WL}}$--$M_{500}$--$z$) relations, respectively, while accounting for the bias in these observables using simulation-based calibrations. As a result, the count rate-inferred and lensing-calibrated cluster mass is obtained from the joint modelling of the scaling relations, as the ensemble mass spanning a range of $10^{13}h^{-1}M_{odot}lesssim M_{500}lesssim10^{15} h^{-1}M_{odot}$ with a median of $approx10^{14} h^{-1}M_{odot}$ for the eFEDS sample. With the mass calibration, we further model the X-ray observable-to-mass-and-redshift relations, including the rest-frame soft-band and bolometric luminosity ($L_{mathrm{X}}$ and $L_{mathrm{b}}$), the emission-weighted temperature $T_{mathrm{X}}$, the mass of intra-cluster medium $M_{mathrm{g}}$, and the mass proxy $Y_{mathrm{X}}$, which is the product of $T_{mathrm{X}}$ and $M_{mathrm{g}}$. (abridged)
108 - H. Brunner , T. Liu , G. Lamer 2021
Context. The eROSITA X-ray telescope onboard the Spectrum-Roentgen-Gamma (SRG) observatory combines a large field of view and collecting area in the energy range $sim$0.2 to $sim$8.0 keV with the capability to perform uniform scanning observations of large sky areas. Aims. SRG/eROSITA performed scanning observations of the $sim$140 square degrees eROSITA Final Equatorial Depth Survey (eFEDS) field as part of its performance verification phase. The observing time was chosen to slightly exceed the depth of equatorial fields after the completion of the eROSITA all-sky survey. We present a catalog of detected X-ray sources in the eFEDS field providing source positions and extent information, as well as fluxes in multiple energy bands and document a suite of tools and procedures developed for eROSITA data processing and analysis, validated and optimized by the eFEDS work. Methods. A multi-stage source detection procedure was optimized and calibrated by performing realistic simulations of the eROSITA eFEDS observations. We cross-matched the eROSITA eFEDS source catalog with previous XMM-ATLAS observations, confirming excellent agreement of the eROSITA and XMM-ATLAS source fluxes. Result. We present a primary catalog of 27910 X-ray sources, including 542 with significant spatial extent, detected in the 0.2-2.3 keV energy range with detection likelihoods $ge 6$, corresponding to a point source flux limit of $approx 7 times 10^{-15}$ erg/cm$^2$/s in the 0.5-2.0 keV energy band. A supplementary catalog contains 4774 low-significance source candidates with detection likelihoods between 5 and 6. In addition, a hard band sample of 246 sources detected in the energy range 2.3-5.0 keV above a detection likelihood of 10 is provided. A description of the dedicated data analysis software, calibration database and standard calibrated data products is provided in appendix.
152 - A. Liu , E. Bulbul , V. Ghirardini 2021
The eROSITA Final Equatorial-Depth Survey has been carried out during the PV phase of the SRG/eROSITA telescope and completed in November 2019. This survey is designed to provide the first eROSITA-selected sample of galaxy clusters and groups and to test the predictions for the all-sky survey in the context of cosmological studies with clusters. In the 140 deg$^2$ area covered by eFEDS, 542 candidate clusters and groups are detected as extended X-ray sources, down to a flux of $sim10^{-14} $erg/s/cm$^2$ in the soft band (0.5-2 keV) within 1. In this work, we provide the catalog of candidate galaxy clusters and groups in eFEDS. We perform imaging and spectral analysis on the eFEDS clusters with eROSITA X-ray data, and study the properties of the sample. The clusters are distributed in the redshift range [0.01, 1.3], with the median redshift at 0.35. We obtain the ICM temperature measurement with $>2sigma$ c.l. for $sim$1/5 (102/542) of the sample. The average temperature of these clusters is $sim$2 keV. Radial profiles of flux, luminosity, electron density, and gas mass are measured from the precise modeling of the imaging data. The selection function, the purity and completeness of the catalog are examined and discussed in detail. The contamination fraction is $sim1/5$ in this sample, dominated by misidentified point sources. The X-ray Luminosity Function of the clusters agrees well with the results obtained from other recent X-ray surveys. We also find 19 supercluster candidates in eFEDS, most of which are located at redshifts between 0.1 and 0.5. The eFEDS cluster and group catalog provides a benchmark proof-of-concept for the eROSITA All-Sky Survey extended source detection and characterization. We confirm the excellent performance of eROSITA for cluster science and expect no significant deviations from our pre-launch expectations for the final All-Sky Survey.
Understanding the cluster population of clusters of galaxies is of the utmost importance for using cluster samples in both astrophysical and cosmological studies. We present an in-depth analysis of the X-ray morphological parameters of the galaxy clu sters and groups detected in the eROSITA Final Equatorial-Depth Survey (eFEDS). We study the eROSITA X-ray imaging data for a sample of 325 clusters and groups that are significantly detected in the eFEDS field. We characterize their dynamical properties by measuring a number of dynamical estimators: concentration, central density, cuspiness, ellipticity, power-ratios, photon asymmetry, and Gini coefficient. The galaxy clusters and groups detected in eFEDS, covering a luminosity range of more than three orders of magnitude and large redshift range out to 1.2 provide an ideal sample for studying the redshift and luminosity evolution of the morphological parameters and characterization of the underlying dynamical state of the sample. Based on these measurements we construct a new dynamical indicator, relaxation score, for all the clusters in the sample. We find no evidence for bimodality in the distribution of morphological parameters of our clusters, rather we observe a smooth transition from the cool-core to non-cool-core and from relaxed to disturbed states. A significant evolution in redshift and luminosity is also observed in the morphological parameters examined in this study after carefully taking into account the selection effects. We determine that our eFEDS-selected cluster sample, differently than ROSAT-based cluster samples, is not biased toward relaxed clusters, but contains a similar fraction of disturbed as SZ surveys.
Context: After the successful launch of the Spectrum-Roentgen-Gamma (SRG) mission in July 2019, eROSITA, the soft X-ray instrument aboard SRG, performed scanning observations of a large contiguous field, namely the eROSITA Final Equatorial Depth Surv ey (eFEDS), ahead of the planned four-year all-sky survey. eFEDS yielded a large sample of X-ray sources with very rich multi-band photometric and spectroscopic coverage. Aims: We present here the eFEDS Active Galactic Nuclei (AGN) catalog and the eROSITA X-ray spectral properties of the eFEDS sources. Methods: Using a Bayesian method, we perform a systematic X-ray spectral analysis for all eFEDS sources. The appropriate model is chosen based on the source classification and the spectral quality, and, in the case of AGN, including the possibility of intrinsic (rest-frame) absorption and/or soft excess emission. Hierarchical Bayesian modeling (HBM) is used to estimate the spectral parameter distribution of the sample. Results: X-ray spectral properties are presented for all eFEDS X-ray sources. There are 21952 candidate AGN, which comprise 79% of the eFEDS sample. Despite a large number of faint sources with low photon counts, our spectral fitting provides meaningful measurements of fluxes, luminosities, and spectral shapes for a majority of the sources. This AGN catalog is dominated by X-ray unobscured sources, with an obscured (logNH>21.5) fraction of 10% derived by HBM. The power-law slope of the catalog can be described by a Gaussian distribution of 1.94+-0.22. Above a photon counts threshold of 500, nine out of 50 AGN have soft excess detected. For the sources with blue UV to optical color (type-I AGN), the X-ray emission is well correlated with the UV emission with the usual anti-correlation between the X-ray to UV spectral slope {alpha}_{OX} and the UV luminosity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا