ترغب بنشر مسار تعليمي؟ اضغط هنا

The incommensurate magnetic structures and phase diagrams of multiferroics has been explored on the basis of accurate micromagnetic analysis taking into account the spin flexoelecric interaction (Lifshitz invariant). The objects of the study are BiFe O_3-like single crystals and epitaxial films grown on the <111> substrates. The main control parameters are the magnetic field, the magnetic anisotropy, and the epitaxial strain in the case of films. We predict novel quasi-cycloidal structures induced by external magnetic field or by epitaxial strain in the BiFeO_3-films. Phase diagrams representing the regions of homogeneous magnetic states and incommensurate structures stability are constructed for the two essential geometries of magnetic field (magnetic field oriented parallel to the principal crystal axis C_3 and perpendicular to this direction C_3). It is shown that the direction of applied magnetic field substantially affects a set of magnetic phases, properties of incommensurate structures, character of phase transitions. Novel conical type of cycloidal ordering is revealed during the transition from incommensurate cycloidal structure into homogeneous magnetic state. Elaborated phase diagrams allow estimate appropriate combination of control parameters (magnetic field, magnetic anisotropy, exchange stiffness) required to the destruction of cycloidal ordering corresponding to the transition into homogeneous structure. The results show that the magnitude of critical magnetic field suppressing cycloid is lowered in multiferroics films comparing to single crystals, it can be also lowered by the selection of orientation of magnetic field. Our results can be useful for strain engineering of new multiferroic functional materials on demand.
The behavior of antiferromagnetic domain wall (ADW) against the background of a periodic ferroelectric domain structure has been investigated. It has been shown that the structure and the energy of ADW change due to the interaction with a ferroelectr ic domain structure. The ferroelectric domain boundaries play the role of pins for magnetic spins, the spin density changes in the vicinity of ferroelectric walls. The ADW energy becomes a periodical function on a coordinate which is the position of ADW relative to the ferroelectric domain structure. It has been shown that the energy of the magnetic domain wall attains minimum values when the center of the ADW coincides with the ferroelectric wall and the periodic ferroelectric structure creates periodic coercitivity for the ADW. The neighbouring equilibrium states of the ADW are separated by a finite potential barrier.
Crystals of solid solutions Bi(1-x)R(x)FeO(3),here R= La, Dy, Gd, were obtained with x <=0.7. Solid solutions of the stated rare earths, as x is increased from 0 to 0.7, have one and the same sequence of five crystal structures (rhombohedral C3v 6, t riclinic C1 1,orthorhombic D2 6,orthorhombic D2 5, orthorhombic C2v 9). The ferroelectric-paraelectric transition occurs in rhombohedral and triclinic crystals at T=810-560{deg}C.The high temperature modifications are orthorhombic and cubic. The orthorhombic structure C2v 9 holds up to 1180{deg}C.The ferroelectric domain structure was distinguished in all types of crystals. No magnetoelectric effect (MEE) was detected in the orthorhombic crystals with the D2 (222) symmetry class. But the mm2 crystals were found to have both quadratic and linear MEE.The value of the quadratic effect is considerably smaller than that ofthe linear one. Magnetoelectric hysteresis takes place in the crystals. The tensorial properties of the obtained crystals are analyzed from the viewpoint of crystal symmetry.
The correlation between antiferromagnetic and ferroelectric domain structures in multiferroics has been studied. The role of magnetoelectric interactions in a formation of antiferromagnetic domain structure has been analysed. It has been shown the ma jor physical mechanism binding antiferromagnetic domains to ferroelectrics ones is inhomogeneous flexomagnetoelectric interaction of the Pz((lgrad)lz-lz(divl)) type. The dependences illustrating rearrangement of antiferromagnetic domain pattern together with change of ferroelectric domains thickness has been performed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا