ترغب بنشر مسار تعليمي؟ اضغط هنا

We propose capacitively driven low-swing global interconnect circuit using a receiver that utilizes magnetoelectric (ME) effect induced magnetization switching to reduce the energy consumption. Capacitively driven wire has recently been shown to be e ffective in improving the performance of global interconnects. Such techniques can reduce the signal swing in the interconnect by using a capacitive divider network and does not require an additional voltage supply. However, the large reduction in signal swing makes it necessary to use differential signaling and amplification for successful regeneration at the receiver, which add area and static power. ME effect induced magnetization reversal has recently been proposed which shows the possibility of using a low voltage to switch a nanomagnet adjacent to a multi-ferroic oxide. Here, we propose an ME effect based receiver that uses the low voltage at the receiving end of the global wire to switch a nanomagnet. The nanomagnet is also used as the free layer of a magnetic tunnel junction (MTJ), the resistance of which is tuned through the ME effect. This change in MTJ resistance is converted to full swing binary signals by using simple digital components. This process allows capacitive low swing interconnection without differential signaling or amplification, which leads to significant energy efficiency. Our simulation results indicate that for 5-10 mm long global wires in IBM 45 nm technology, capacitive ME design consumes 3x lower energy compared to full-swing CMOS design and 2x lower energy compared to differential amplifier based low-swing capacitive CMOS design.
In this work, we propose helicity-dependent switching (HDS) of magnetization of Co/Pt for energy efficient optical receiver. Designing a low power optical receiver for optical-to-electrical signal conversion has proven to be very challenging. Current day receivers use a photodiode that produces a photocurrent in response to input optical signals, and power hungry trans-impedance amplifiers are required to amplify the small photocurrents. Here, we propose light helicity induced switching of magnetization to overcome the requirement of photodiodes and subsequent trans-impedance amplification by sensing the change in magnetization with a magnetic tunnel junction (MTJ). Magnetization switching of a thin ferromagnet layer using circularly polarized laser pulses have recently been demonstrated which shows one-to-one correspondence between light helicity and the magnetization state. We propose to utilize this phenomena by using digital input dependent circularly polarized laser pulses to directly switch the magnetization state of a thin Co/Pt ferromagnet layer at the receiver. The Co/Pt layer is used as the free layer of an MTJ, the resistance of which is modified by the laser pulses. With the one-to-one dependence between input data and output magnetization state, the MTJ resistance is directly converted to digital output signal. Our device to circuit level simulation results indicate that, HDS based optical receiver consumes only 0.124 pJ/bit energy, which is much lower than existing techniques.
In this paper, we propose a Spin-Torque (ST) based sensing scheme that can enable energy efficient multi-bit long distance interconnect architectures. Current-mode interconnects have recently been proposed to overcome the performance degradations ass ociated with conventional voltage mode Copper (Cu) interconnects. However, the performance of current mode interconnects are limited by analog current sensing transceivers and equalization circuits. As a solution, we propose the use of ST based receivers that use Magnetic Tunnel Junctions (MTJ) and simple digital components for current-to-voltage conversion and do not require analog transceivers. We incorporate Spin-Hall Metal (SHM) in our design to achieve high speed sensing. We show both single and multi-bit operations that reveal major benefits at higher speeds. Our simulation results show that the proposed technique consumes only 3.93-4.72 fJ/bit/mm energy while operating at 1-2 Gbits/sec; which is considerably better than existing charge based interconnects. In addition, Voltage Controlled Magnetic Anisotropy (VCMA) can reduce the required current at the sensor. With the inclusion of VCMA, the energy consumption can be further reduced to 2.02-4.02 fJ/bit/mm
Optical interconnect has emerged as the front-runner to replace electrical interconnect especially for off-chip communication. However, a major drawback with optical interconnects is the need for photodetectors and amplifiers at the receiver, impleme nted usually by direct bandgap semiconductors and analog CMOS circuits, leading to large energy consumption and slow operating time. In this article, we propose a new optical interconnect architecture that uses a magnetic tunnel junction (MTJ) at the receiver side that is switched by femtosecond laser pulses. The state of the MTJ can be sensed using simple digital CMOS latches, resulting in significant improvement in energy consumption. Moreover, magnetization in the MTJ can be switched on the picoseconds time-scale and our design can operate at a speed of 5 Gbits/sec for a single link.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا