ترغب بنشر مسار تعليمي؟ اضغط هنا

Noethers theorem is one of the fundamental laws of physics, relating continuous symmetries and conserved currents. Here we explore the role of Noethers theorem at the deconfined quantum critical point (DQCP), which is the quantum phase transition bey ond the Landau-Ginzburg-Wilson paradigm. It was expected that a larger continuous symmetry could emerge at the DQCP, which, if true, should lead to emerged conserved current at low energy. By identifying the emergent current fluctuation in the spin excitation spectra, we can quantitatively study the current-current correlation in large-scale quantum Monte Carlo simulations. Our results reveal the conservation of the emergent current, as signified by the vanishing anomalous dimension of the current operator, and hence provide supporting evidence for the emergent symmetry at the DQCP. Our study demonstrates an elegant yet practical approach to detect emergent symmetry by probing the spin excitations, which could potentially guide the ongoing experimental search for DQCP in quantum magnets.
The Mott insulator is the quintessential strongly correlated electronic state. We obtain complete insight into the physics of the two-dimensional Mott insulator by extending the slave-fermion (holon-doublon) description to finite temperatures. We fir st benchmark its predictions against state-of-the-art quantum Monte Carlo simulations, demonstrating quantitative agreement. Qualitatively, the short-ranged spin fluctuations both induce holon-doublon bound states and renormalize the charge sector to form the Hubbard bands. The Mott gap is understood as the charge gap renormalized downwards by these spin fluctuations. As temperature increases, the Mott gap closes before the charge gap, causing a pseudogap regime to appear naturally during the melting of the Mott insulator.
Metallic quantum criticality is among the central theme in the understanding of correlated electronic systems, and converging results between analytical and numerical approaches are still under calling. In this work, we develop state-of-art large sca le quantum Monte Carlo simulation technique and systematically investigate the itinerant quantum critical point on a 2D square lattice with antiferromagnetic spin fluctuations at wavevector $mathbf{Q}=(pi,pi)$ -- a problem that resembles the Fermi surface setup and low-energy antiferromagnetic fluctuations in high-Tc cuprates and other critical metals, which might be relevant to their non-Fermi-liquid behaviors. System sizes of $60times 60 times 320$ ($L times L times L_tau$) are comfortably accessed, and the quantum critical scaling behaviors are revealed with unprecedingly high precision. We found that the antiferromagnetic spin fluctuations introduce effective interactions among fermions and the fermions in return render the bare bosonic critical point into a new universality, different from both the bare Ising universality class and the Hertz-Mills-Moriya RPA prediction. At the quantum critical point, a finite anomalous dimension $etasim 0.125$ is observed in the bosonic propagator, and fermions at hot spots evolve into a non-Fermi-liquid. In the antiferromagnetically ordered metallic phase, fermion pockets are observed as energy gap opens up at the hot spots. These results bridge the recent theoretical and numerical developments in metallic quantum criticality and can be served as the stepping stone towards final understanding of the 2D correlated fermions interacting with gapless critical excitations.
Deconfined quantum critical points govern continuous quantum phase transitions at which fractionalized (deconfined) degrees of freedom emerge. Here we study dynamical signatures of the fractionalized excitations in a quantum magnet (the easy-plane J- Q model) that realize a deconfined quantum critical point with emergent O(4) symmetry. By means of large-scale quantum Monte Carlo simulations and stochastic analytic continuation of imaginary-time correlation functions, we obtain the dynamic spin structure factors in the $S^{x}$ and $S^{z}$ channels. In both channels, we observe broad continua that originate from the deconfined excitations. We further identify several distinct spectral features of the deconfined quantum critical point, including the lower edge of the continuum and its form factor on moving through the Brillouin Zone. We provide field-theoretical and lattice model calculations that explain the overall shapes of the computed spectra, which highlight the importance of interactions and gauge fluctuations to explaining the spectral-weight distribution. We make further comparisons with the conventional Landau O(2) transition in a different quantum magnet, at which no signatures of fractionalization are observed. The distinctive spectral signatures of the deconfined quantum critical point suggest the feasibility of its experimental detection in neutron scattering and nuclear magnetic resonance experiments.
Recently significant progress has been made in $(2+1)$-dimensional conformal field theories without supersymmetry. In particular, it was realized that different Lagrangians may be related by hidden dualities, i.e., seemingly different field theories may actually be identical in the infrared limit. Among all the proposed dualities, one has attracted particular interest in the field of strongly-correlated quantum-matter systems: the one relating the easy-plane noncompact CP$^1$ model (NCCP$^1$) and noncompact quantum electrodynamics (QED) with two flavors ($N = 2$) of massless two-component Dirac fermions. The easy-plane NCCP$^1$ model is the field theory of the putative deconfined quantum-critical point separating a planar (XY) antiferromagnet and a dimerized (valence-bond solid) ground state, while $N=2$ noncompact QED is the theory for the transition between a bosonic symmetry-protected topological phase and a trivial Mott insulator. In this work we present strong numerical support for the proposed duality. We realize the $N=2$ noncompact QED at a critical point of an interacting fermion model on the bilayer honeycomb lattice and study it using determinant quantum Monte Carlo (QMC) simulations. Using stochastic series expansion QMC, we study a planar version of the $S=1/2$ $J$-$Q$ spin Hamiltonian (a quantum XY-model with additional multi-spin couplings) and show that it hosts a continuous transition between the XY magnet and the valence-bond solid. The duality between the two systems, following from a mapping of their phase diagrams extending from their respective critical points, is supported by the good agreement between the critical exponents according to the proposed duality relationships.
Topological spin liquids are robust quantum states of matter with long-range entanglement and possess many exotic properties such as the fractional statistics of the elementary excitations. Yet these states, short of local parameters like all topolog ical states, are elusive for conventional experimental probes. In this work, we combine theoretical analysis and quantum Monte Carlo numerics on a frustrated spin model which hosts a $mathbb Z_2$ topological spin liquid ground state, and demonstrate that the presence of symmetry-protected gapless edge modes is a characteristic feature of the state, originating from the nontrivial symmetry fractionalization of the elementary excitations. Experimental observation of these modes on the edge would directly indicate the existence of the topological spin liquids in the bulk, analogous to the fact that the observation of Dirac edge states confirmed the existence of topological insulators.
Symmetry protected topological (SPT) phases in free fermion and interacting bosonic systems have been classified, but the physical phenomena of interacting fermionic SPT phases have not been fully explored. Here, employing large-scale quantum Monte C arlo simulation, we investigate the edge physics of a bilayer Kane-Mele-Hubbard model with zigzag ribbon geometry. Our unbiased numerical results show that the fermion edge modes are gapped out by interaction, while the bosonic edge modes remain gapless at the $(1+1)d$ boundary, before the bulk quantum phase transition to a topologically trivial phase. Therefore, finite fermion gaps both in the bulk and on the edge, together with the robust gapless bosonic edge modes, prove that our system becomes an emergent bosonic SPT phase at low energy, which is, for the first time, directly observed in an interacting fermion lattice model.
We study a lattice model of interacting Dirac fermions in $(2+1)$ dimension space-time with an SU(4) symmetry. While increasing interaction strength, this model undergoes a {it continuous} quantum phase transition from the weakly interacting Dirac se mimetal to a fully gapped and nondegenerate phase without condensing any Dirac fermion bilinear mass operator. This unusual mechanism for mass generation is consistent with recent studies of interacting topological insulators/superconductors, and also consistent with recent progresses in lattice QCD community.
Continuous symmetries are believed to emerge at many quantum critical points in frustrated magnets. In this work, we study two candidates of this paradigm: the transverse-field frustrated Ising model (TFFIM) on the triangle and the honeycomb lattices . The former is the prototypical example of this paradigm, and the latter has recently been proposed as another realization. Our large-scale Monte Carlo simulation confirms that the quantum phase transition (QPT) in the triangle lattice TFFIM indeed hosts an emergent O(2) symmetry, but that in the honeycomb lattice TFFIM is a first-order QPT and does not have an emergent continuous symmetry. Furthermore, our analysis of the order parameter histogram reveals that such different behavior originates from the irrelevance and relevance of anisotropic terms near the QPT in the low-energy effective theory of the two models. The comparison between theoretical analysis and numerical simulation in this work paves the way for scrutinizing investigation of emergent continuous symmetry at classical and quantum phase transitions.
We propose a general scheme for diagnosing interaction-driven topological phases in the weak interaction regime using exact diagonalization (ED). The scheme comprises the analysis of eigenvalues of the point-group operators for the many-body eigensta tes and the correlation functions for physical observables to extract the symmetries of the order parameters and the topological numbers of the underlying ground states at the thermodynamic limit from a relatively small size system afforded by ED. As a concrete example, we investigate the interaction effects on the half-filled spinless fermions on the checkerboard lattice with a quadratic band crossing point. Numerical results support the existence of a spontaneous quantum anomalous Hall phase purely driven by a nearest-neighbor weak repulsive interaction, separated from a nematic Mott insulator phase at strong repulsive interaction by a first-order phase transition.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا