ترغب بنشر مسار تعليمي؟ اضغط هنا

Superconducting MgB2 strands with nanometer-scale SiC additions have been investigated systematically using transport and magnetic measurements. A comparative study of MgB2 strands with different nano-SiC addition levels has shown C-doping-enhanced c ritical current density Jc through enhancements in the upper critical field, Hc2, and decreased anisotropy. The critical current density and flux pinning force density obtained from magnetic measurements were found to greatly differ from the values obtained through transport measurements, particularly with regards to magnetic field dependence. The differences in magnetic and transport results are largely attributed to connectivity related effects. On the other hand, based on the scaling behavior of flux pinning force, there may be other effective pinning centers in MgB2 strands in addition to grain boundary pinning.
177 - Y. Sun , Z. X. Shi , D. M. Gu 2010
Magnetic hysteresis loops (MHLs) have been comparatively measured on both textured and single crystalline Sc5Ir4Si10 superconductors. Critical current densities and flux pinning forces are calculated from MHLs by Bean model. Three kinds of peaks of t he flux pinning force are found at low fields near zero, intermediated fields, and high fields near the upper critical field, respectively. The characters and origins of these peaks are studied in detail.
81 - Y. Ding , Y. Sun , X. D. Wang 2010
Both DC and AC magnetization measurements were performed on the NdFeAsO0.88F0.12 superconductor to investigate the influence of magnetism on the superconducting properties of this system. The crossover of the ZFC and FC magnetic susceptibility curves under 7.5KOe was observed. The imaginary component of the first harmonics of the AC magnetic susceptibility, increases with the increasing DC field below 10K and shows frequency dependency under 7.5KOe at low temperature. The paramagnetism of Nd3+ ions tilts the magnetic hysteresis loops and broadens the hysteresis width. After correction for the paramagnetism, the field and temperature dependence of intrinsic Jcm was obtained and compared with the experimentally obtained total Jcm. The origin of the abnormal behavior of magnetization was investigated and attributed to a magnetic background, which was speculated to be caused by the spin-glass state. However, this magnetic background does not affect the flux pinning properties in this sample. The related mechanism was discussed.
402 - Y. Ding , Y. Sun , X. D. Wang 2010
Polycrystalline NdFeAsO0.88F0.12 superconductors prepared by high pressure (HP) and ambient pressure (AP) method were comparatively studied by magnetization and transport measurements. Upper critical field (Hc2), irreversibility field (Hirr) and the anisotropy parameter were estimated from resistance transition curves. The broadening of transition width was observed, and ascribed to both Hc2 anisotropy and superconductivity inhomogeneity of samples. Magnetic hysteresis loops (MHLs) in low fields were measured to detect the trace of weak-link behavior. The reclosed hysteresis loops in low fields manifest that there are weak-links in both samples. Magnetization critical current density Jcm were derived from MHLs. High-pressure synthesized sample shows higher Jcm. However, by means of direct transport I-V measurements, transport critical current density Jct was very low. The Jct values for two samples are comparable. Large discrepancies between Jcm and Jct also indicate that there are weak-links in both samples. The relative mechanism is discussed in detail.
The anisotropy of the critical current density (Jc) and its influence on measurement of irreversibility field (Birr) has been investigated for high quality, in-situ MgB2 strands. Comparison of transport and magnetization measurements has revealed the onset of a regime where large differences exist between transport and magnetically measured values of the critical current density and Birr. These effects, initially unexpected due to the lack of crystalline texture in these in-situ processed strands, appear to be due to a fibrous microstructure, connected with the details of the wire fabrication and MgB2 formation reactions. Scanning electron micrographs of in-situ-processed MgB2 monocore strands have revealed a fibrous microstructure. Grains (~100 nm) are randomly oriented, and there is no apparent local texture of the grains. However, this randomly oriented polycrystalline material has a fibrous texture at a larger length scale, with stringers of MgB2 (~ 60 {mu}m long and ~5 {mu}m in diameter) partially separated by elongated pores -- the spaces previously occupied by stringers of elemental Mg. This leads to an interpretation of the differences observed in transport and magnetically determined critical currents, in particular a large deviation between the two at higher fields, in terms of different transverse and longitudinal connectivities within the strand. The different values of connectivity also lead to different resistive transition widths, and thus irreversibility field values, as measured by transport and magnetic techniques. Finally, these considerations are seen to influence estimated pinning potentials for the strands.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا