ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a new algorithm designed to improve the signal to noise ratio (SNR) of point and extended source detections in direct imaging data. The novel part of our method is that it finds the linear combination of the science images that best match counterpart images with signal removed from suspected source regions. The algorithm, based on the Locally Optimized Combination of Images (LOCI) method, is called Matched LOCI or MLOCI. We show using data obtained with the Gemini Planet Imager (GPI) and Near-Infrared Coronagraphic Imager (NICI) that the new algorithm can improve the SNR of point source detections by 30-400% over past methods. We also find no increase in false detections rates. No prior knowledge of candidate companion locations is required to use MLOCI. While non-blind applications may yield linear combinations of science images which seem to increase the SNR of true sources by a factor > 2, they can also yield false detections at high rates. This is a potential pitfall when trying to confirm marginal detections or to re-detect point sources found in previous epochs. Our findings are relevant to any method where the coefficients of the linear combination are considered tunable, e.g. LOCI and Principal Component Analysis (PCA). Thus we recommend that false detection rates be analyzed when using these techniques.
We have completed a high-contrast direct imaging survey for giant planets around 57 debris disk stars as part of the Gemini NICI Planet-Finding Campaign. We achieved median H-band contrasts of 12.4 mag at 0.5 and 14.1 mag at 1 separation. Follow-up o bservations of the 66 candidates with projected separation < 500 AU show that all of them are background objects. To establish statistical constraints on the underlying giant planet population based on our imaging data, we have developed a new Bayesian formalism that incorporates (1) non-detections, (2) single-epoch candidates, (3) astrometric and (4) photometric information, and (5) the possibility of multiple planets per star to constrain the planet population. Our formalism allows us to include in our analysis the previously known Beta Pictoris and the HR 8799 planets. Our results show at 95% confidence that <13% of debris disk stars have a >5MJup planet beyond 80 AU, and <21% of debris disk stars have a >3MJup planet outside of 40 AU, based on hot-start evolutionary models. We model the population of directly-imaged planets as d^2N/dMda ~ m^alpha a^beta, where m is planet mass and a is orbital semi-major axis (with a maximum value of amax). We find that beta < -0.8 and/or alpha > 1.7. Likewise, we find that beta < -0.8 and/or amax < 200 AU. If we ignore the Beta Pic and HR 8799 planets (should they belong to a rare and distinct group), we find that < 20% of debris disk stars have a > 3MJup planet beyond 10 AU, and beta < -0.8 and/or alpha < -1.5. Our Bayesian constraints are not strong enough to reveal any dependence of the planet frequency on stellar host mass. Studies of transition disks have suggested that about 20% of stars are undergoing planet formation; our non-detections at large separations show that planets with orbital separation > 40 AU and planet masses > 3 MJup do not carve the central holes in these disks.
We present 3.6 to 70 {mu}m Spitzer photometry of 154 weak-line T Tauri stars (WTTS) in the Chamaeleon, Lupus, Ophiuchus and Taurus star formation regions, all of which are within 200 pc of the Sun. For a comparative study, we also include 33 classica l T Tauri stars (CTTS) which are located in the same star forming regions. Spitzer sensitivities allow us to robustly detect the photosphere in the IRAC bands (3.6 to 8 {mu}m) and the 24 {mu}m MIPS band. In the 70 {mu}m MIPS band, we are able to detect dust emission brighter than roughly 40 times the photosphere. These observations represent the most sensitive WTTS survey in the mid to far infrared to date, and reveal the frequency of outer disks (r = 3-50 AU) around WTTS. The 70 {mu}m photometry for half the c2d WTTS sample (the on-cloud objects), which were not included in the earlier papers in this series, Padgett et al. (2006) and Cieza et al. (2007), are presented here for the first time. We find a disk frequency of 19% for on-cloud WTTS, but just 5% for off- cloud WTTS, similar to the value reported in the earlier works. WTTS exhibit spectral energy distributions (SEDs) that are quite diverse, spanning the range from optically thick to optically thin disks. Most disks become more tenuous than Ldisk/L* = 2 x 10^-3 in 2 Myr, and more tenuous than Ldisk/L* = 5 x 10^-4 in 4 Myr.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا