ترغب بنشر مسار تعليمي؟ اضغط هنا

The possibility of earthquake prediction is one of the key open questions in modern geophysics. We propose an approach based on the analysis of common short-term candidate precursors (2 weeks to 3 months prior to strong earthquake) with the subsequen t processing of brain activity signals generated in specific types of rats (kept in laboratory settings) who reportedly sense an impending earthquake few days prior to the event. We illustrate the identification of short-term precursors using the groundwater sodium-ion concentration data in the time frame from 2010 to 2014 (a major earthquake occurred on February 28, 2013), recorded at two different sites in the south-eastern part of the Kamchatka peninsula, Russia. The candidate precursors are observed as synchronized peaks in the nonstationarity factors, introduced within the flicker-noise spectroscopy framework for signal processing, for the high-frequency component of both time series. These peaks correspond to the local reorganizations of the underlying geophysical system that are believed to precede strong earthquakes. The rodent brain activity signals are selected as potential immediate (up to 2 weeks) deterministic precursors due to the recent scientific reports confirming that rodents sense imminent earthquakes and the population-genetic model of Kirshvink (2000) showing how a reliable genetic seismic escape response system may have developed over the period of several hundred million years in certain animals. The use of brain activity signals, such as electroencephalograms, in contrast to conventional abnormal animal behavior observations, enables one to apply the standard input-sensor-response approach to determine what input signals trigger specific seismic escape brain activity responses
We use flicker-noise spectroscopy (FNS), a phenomenological method for the analysis of time and spatial series operating on structure functions and power spectrum estimates, to identify and study harmful chatter vibrations in a regenerative turning p rocess. The 3D cutting force components experimentally measured during stainless steel turning are analyzed, and the parameters of their stochastic dynamics are estimated. Our analysis shows that the system initially exhibiting regular vibrations associated with spindle rotation becomes unstable to high-frequency noisy oscillations (chatter) at larger cutting depths. We suggest that the chatter may be attributed to frictional stick-and-slip interactions between the contact surfaces of cutting tool and workpiece. We compare our findings with previously reported results obtained by statistical, recurrence, multifractal, and wavelet methods. We discuss the potential of FNS in monitoring the turning process in manufacturing practice.
We examine stochastic variability in the dynamics of X-ray emission from the black hole system GRS 1915+105, a strongly variable microquasar commonly used for studying relativistic jets and the physics of black hole accretion. The analysis of sample observations for 13 different states in both soft (low) and hard (high) energy bands is performed by flicker-noise spectroscopy (FNS), a phenomenological time series analysis method operating on structure functions and power spectrum estimates. We find the values of FNS parameters, including the Hurst exponent, flicker-noise parameter, and characteristic time scales, for each observation based on multiple 2,500-second continuous data segments. We identify four modes of stochastic variability driven by dissipative processes that may be related to viscosity fluctuations in the accretion disk around the black hole: random (RN), power-law (1F), one-scale (1S), and two-scale (2S). The variability modes are generally the same in soft and hard energy bands of the same observation. We discuss the potential for future FNS studies of accreting black holes.
We propose a new type of earthquake precursor based on the analysis of correlation dynamics between geophysical signals of different nature. The precursor is found using a two-parameter cross-correlation function introduced within the framework of fl icker-noise spectroscopy, a general statistical physics approach to the analysis of time series. We consider an example of cross-correlation analysis for water salinity time series, an integral characteristic of the chemical composition of groundwater, and geoacoustic emissions recorded at the G-1 borehole on the Kamchatka peninsula in the time frame from 2001 to 2003, which is characterized by a sequence of three groups of significant seismic events. We found that cross-correlation precursors took place 27, 31, and 35 days ahead of the strongest earthquakes for each group of seismic events, respectively. At the same time, precursory anomalies in the signals themselves were observed only in the geoacoustic emissions for one group of earthquakes.
We apply flicker-noise spectroscopy (FNS), a time series analysis method operating on structure functions and power spectrum estimates, to study the clinical electroencephalogram (EEG) signals recorded in children/adolescents (11 to 14 years of age) with diagnosed schizophrenia-spectrum symptoms at the National Center for Psychiatric Health (NCPH) of the Russian Academy of Medical Sciences. The EEG signals for these subjects were compared with the signals for a control sample of chronically depressed children/adolescents. The purpose of the study is to look for diagnostic signs of subjects susceptibility to schizophrenia in the FNS parameters for specific electrodes and cross-correlations between the signals simultaneously measured at different points on the scalp. Our analysis of EEG signals from scalp-mounted electrodes at locations F3 and F4, which are symmetrically positioned in the left and right frontal areas of cerebral cortex, respectively, demonstrates an essential role of frequency-phase synchronization, a phenomenon representing specific correlations between the characteristic frequencies and phases of excitations in the brain. We introduce quantitative measures of frequency-phase synchronization and systematize the values of FNS parameters for the EEG data. The comparison of our results with the medical diagnoses for 84 subjects performed at NCPH makes it possible to group the EEG signals into 4 categories corresponding to different risk levels of subjects susceptibility to schizophrenia. We suggest that the introduced quantitative characteristics and classification of cross-correlations may be used for the diagnosis of schizophrenia at the early stages of its development.
A phenomenological systems approach for identifying potential precursors in multiple signals of different types for the same local seismically active region is proposed based on the assumption that a large earthquake may be preceded by a system recon figuration (preparation) at different time and space scales. A nonstationarity factor introduced within the framework of flicker-noise spectroscopy, a statistical physics approach to the analysis of time series, is used as the dimensionless criterion for detecting qualitative (precursory) changes within relatively short time intervals in arbitrary signals. Nonstationarity factors for chlorine-ion concentration variations in the underground water of two boreholes on the Kamchatka peninsula and geacoustic emissions in a deep borehole within the same seismic zone are studied together in the time frame around a large earthquake on October 8, 2001. It is shown that nonstationarity factor spikes (potential precursors) take place in the interval from 70 to 50 days before the earthquake for the hydrogeochemical data and at 29 and 6 days in advance for the geoacoustic data.
The functional properties of many technological surfaces in biotechnology, electronics, and mechanical engineering depend to a large degree on the individual features of their nanoscale surface texture, which in turn are a function of the surface man ufacturing process. Among these features, the surface irregularities and self-similarity structures at different spatial scales, especially in the range of 1 to 100 nm, are of high importance because they greatly affect the surface interaction forces acting at a nanoscale distance. An analytical method for parameterizing the surface irregularities and their correlations in nanosurfaces imaged by atomic force microscopy (AFM) is proposed. In this method, flicker noise spectroscopy - a statistical physics approach - is used to develop six nanometrological parameters characterizing the high-frequency contributions of jump- and spike-like irregularities into the surface texture. These contributions reflect the stochastic processes of anomalous diffusion and inertial effects, respectively, in the process of surface manufacturing. The AFM images of the texture of corrosion-resistant magnetite coatings formed on low-carbon steel in hot nitrate solutions with coating growth promoters at different temperatures are analyzed. It is shown that the parameters characterizing surface spikiness are able to quantify the effect of process temperature on the corrosion resistance of the coatings. It is suggested that these parameters can be used for predicting and characterizing the corrosion-resistant properties of magnetite coatings.
We propose an interpolation expression using the difference moment (Kolmogorov transient structural function) of the second order as the average characteristic of displacements for identifying the anomalous diffusion in complex processes when the sto chastic dynamics of the system under study reaches a steady state (large time intervals). Our procedure based on this expression for identifying anomalous diffusion and calculating its parameters in complex processes is applied to the analysis of the dynamics of blinking fluorescence of quantum dots, X-ray emission from accreting objects, fluid velocity in Rayleigh-Benard convection, and geoelectrical signal for a seismic area. For all four examples, the proposed interpolation is able to adequately describe the stochastic part of the experimental difference moment, which implies that anomalous diffusion manifests itself in these complex processes. The results of this study make it possible to broaden the range of complex natural processes in which anomalous diffusion can be identified.
In our earlier study dealing with the analysis of neuromagnetic responses (magnetoencephalograms - MEG) to flickering-color stimuli for a group of control human subjects (9 volunteers) and a patient with photosensitive epilepsy (a 12-year old girl), it was shown that Flicker-Noise Spectroscopy (FNS) was able to identify specific differences in the responses of each organism. The high specificity of individual MEG responses manifested itself in the values of FNS parameters for both chaotic and resonant components of the original signal. The present study applies the FNS cross-correlation function to the analysis of correlations between the MEG responses simultaneously measured at spatially separated points of the human cortex processing the red-blue flickering color stimulus. It is shown that the cross-correlations for control (healthy) subjects are characterized by frequency and phase synchronization at different points of the cortex, with the dynamics of neuromagnetic responses being determined by the low-frequency processes that correspond to normal physiological rhythms. But for the patient, the frequency and phase synchronization breaks down, which is associated with the suppression of cortical regulatory functions when the flickering-color stimulus is applied, and higher frequencies start playing the dominating role. This suggests that the disruption of correlations in the MEG responses is the indicator of pathological changes leading to photosensitive epilepsy, which can be used for developing a method of diagnosing the disease based on the analysis with the FNS cross-correlation function.
Anomalous diffusion, process in which the mean-squared displacement of system states is a non-linear function of time, is usually identified in real stochastic processes by comparing experimental and theoretical displacements at relatively small time intervals. This paper proposes an interpolation expression for the identification of anomalous diffusion in complex signals for the cases when the dynamics of the system under study reaches a steady state (large time intervals). This interpolation expression uses the chaotic difference moment (transient structural function) of the second order as an average characteristic of displacements. A general procedure for identifying anomalous diffusion and calculating its parameters in real stochastic signals, which includes the removal of the regular (low-frequency) components from the source signal and the fitting of the chaotic part of the experimental difference moment of the second order to the interpolation expression, is presented. The procedure was applied to the analysis of the dynamics of magnetoencephalograms, blinking fluorescence of quantum dots, and X-ray emission from accreting objects. For all three applications, the interpolation was able to adequately describe the chaotic part of the experimental difference moment, which implies that anomalous diffusion manifests itself in these natural signals. The results of this study make it possible to broaden the range of complex natural processes in which anomalous diffusion can be identified. The relation between the interpolation expression and a diffusion model, which is derived in the paper, allows one to simulate the chaotic processes in the open complex systems with anomalous diffusion.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا