ﻻ يوجد ملخص باللغة العربية
Anomalous diffusion, process in which the mean-squared displacement of system states is a non-linear function of time, is usually identified in real stochastic processes by comparing experimental and theoretical displacements at relatively small time intervals. This paper proposes an interpolation expression for the identification of anomalous diffusion in complex signals for the cases when the dynamics of the system under study reaches a steady state (large time intervals). This interpolation expression uses the chaotic difference moment (transient structural function) of the second order as an average characteristic of displacements. A general procedure for identifying anomalous diffusion and calculating its parameters in real stochastic signals, which includes the removal of the regular (low-frequency) components from the source signal and the fitting of the chaotic part of the experimental difference moment of the second order to the interpolation expression, is presented. The procedure was applied to the analysis of the dynamics of magnetoencephalograms, blinking fluorescence of quantum dots, and X-ray emission from accreting objects. For all three applications, the interpolation was able to adequately describe the chaotic part of the experimental difference moment, which implies that anomalous diffusion manifests itself in these natural signals. The results of this study make it possible to broaden the range of complex natural processes in which anomalous diffusion can be identified. The relation between the interpolation expression and a diffusion model, which is derived in the paper, allows one to simulate the chaotic processes in the open complex systems with anomalous diffusion.
We propose an interpolation expression using the difference moment (Kolmogorov transient structural function) of the second order as the average characteristic of displacements for identifying the anomalous diffusion in complex processes when the sto
Deviations from Brownian motion leading to anomalous diffusion are ubiquitously found in transport dynamics, playing a crucial role in phenomena from quantum physics to life sciences. The detection and characterization of anomalous diffusion from the
We investigate the time evolution of the scores of the second most popular sport in world: the game of cricket. By analyzing the scores event-by-event of more than two thousand matches, we point out that the score dynamics is an anomalous diffusive p
Anomalous diffusion or, more generally, anomalous transport, with nonlinear dependence of the mean-squared displacement on the measurement time, is ubiquitous in nature. It has been observed in processes ranging from microscopic movement of molecules
A general method is proposed which allows one to estimate drift and diffusion coefficients of a stochastic process governed by a Langevin equation. It extends a previously devised approach [R. Friedrich et al., Physics Letters A 271, 217 (2000)], whi