ترغب بنشر مسار تعليمي؟ اضغط هنا

We carry out density functional theory calculations which demonstrate that the electron dynamics in the skyrmion phase of Fe-rich Mn$_{1-x}$Fe$_x$Ge alloys is governed by Berry phase physics. We observe that the magnitude of the Dzyaloshinskii-Moriya interaction, directly related to the mixed space-momentum Berry phases, changes sign and magnitude with concentration $x$ in direct correlation with the data of Shibata {it et al.}, Nature Nanotech. {bf 8}, 723 (2013). The computed anomalous and topological Hall effects in FeGe are also in good agreement with available experiments. We further develop a simple tight-binding model able to explain these findings. Finally, we show that the adiabatic Berry phase picture is violated in the Mn-rich limit of the alloys.
Different from the two-dimensional (2D) topological insulator, the 2D topological crystalline insulator (TCI) phase disappears when the mirror symmetry is broken, e.g., upon placing on a substrate. Here, based on a new family of 2D TCIs - SnTe and Pb Te monolayers - we theoretically predict the realization of the quantum anomalous Hall effect with Chern number C = 2 even when the mirror symmetry is broken. Remarkably, we also demonstrate that the considered materials retain their large-gap topological properties in quantum well structures obtained by sandwiching the monolayers between NaCl layers. Our results demonstrate that the TCIs can serve as a seed for observing robust topologically non-trivial phases.
We predict the occurrence of a novel type of atomic-scale spin lattice in an Fe monolayer on the Ir(001) surface. Based on density functional theory calculations we parametrize a spin Hamiltonian and solve it numerically using Monte-Carlo simulations . We find the stabilization of a three-dimensional spin structure arranged on a 3x3 lattice. Despite an almost vanishing total magnetization we predict the emergence of a large anomalous Hall effect, to which there is a significant topological contribution purely due to the real space spin texture at the surface.
Lecture Notes of the 45th IFF Spring School Computing Solids - Models, ab initio methods and supercomputing (Forschungszentrum Juelich, 2014).
We demonstrate a canted magnetization of biatomic zigzag Co chains grown on the 5 x 1 reconstructed Ir(001) surface using density functional theory calculations and spin-polarized scanning tunneling microscopy (SP-STM) experiments. Biatomic Co chains grow in three different structural configurations and are all in a ferromagnetic state. Two chain types possess high symmetry due to two equivalent atomic strands and an easy magnetization direction which is along one of the principal crystallographic axes. The easy magnetization axis of the zigzag Co chains is canted away from the surface normal by an angle of 33 degrees. This giant effect is caused by the broken chain symmetry on the substrate in combination with the strong spin-orbit coupling of Ir. SP-STM measurements confirm stable ferromagnetic order of the zigzag chains with a canted magnetization.
Using first-principles calculations, we study the occurrence of non-collinear magnetic order in monatomic Mn chains. First, we focus on freestanding Mn chains and demonstrate that they exhibit a pronounced non-collinear ground state in a large range of interatomic distances between atoms in the chain. By artificially varying the atomic number of Mn we investigate how the magnetic ground state is influenced by alloying the Mn chains with Fe and Cr. With increasing number of 3d-electrons we find a smooth transition in the magnetic phase space starting from an antiferromagnetic state for pure Cr chains through a regime of non-collinear ground states for Mn-rich chains to a ferromagnetic solution approaching the limit of pure Fe chains. Second, we investigate the magnetism in supported Mn chains on the (110)-surfaces of Cu, Pd, and Ag. We show that even a weak chain-surface hybridization is sufficient to dramatically change the magnetic coupling in the chain. Nevertheless, while we observe that Mn chains are antiferromagnetic on Pd(110), a weak non-collinear magnetic order survives for Mn chains on Cu(110) and Ag(110) a few meV in energy below the antiferromagnetic solution. We explain the sensitive dependence of the exchange interaction in Mn chains on the interatomic distance, chemical composition, and their environment based on the competition between the ferromagnetic double exchange and the antiferromagnetic kinetic exchange mechanism. Finally, we perform simulations which predict that the non-collinear magnetic order of Mn chains on Cu(110) and Ag(110) could be experimentally verified by spin-polarized scanning tunneling microscopy.
Based on first-principles density functional theory calculations we explore electronic and magnetic properties of experimentally producible sandwiches and infinite wires made of repeating benzene molecules and transition-metal atoms of V, Nb, and Ta. We describe the bonding mechanism in the molecules and in particular concentrate on the origin of magnetism in these structures. We find that all the considered systems have sizable magnetic moments and ferromagnetic spin-ordering, with the single exception of the V3-Bz4 molecule. By including the spin-orbit coupling into our calculations we determine the easy and hard axes of the magnetic moment, the strength of the uniaxial magnetic anisotropy energy (MAE), relevant for the thermal stability of magnetic orientation, and the change of the electronic structure with respect to the direction of the magnetic moment, important for spin-transport properties. While for the V-based compounds the values of the MAE are only of the order of 0.05-0.5 meV per metal atom, increasing the spin-orbit strength by substituting V with heavier Nb and Ta allows to achieve an increase in anisotropy values by one to two orders of magnitude. The rigid stability of magnetism in these compounds together with the strong ferromagnetic ordering makes them attractive candidates for spin-polarized transport applications. For a Nb-benzene infinite wire the occurrence of ballistic anisotropic magnetoresistance is demonstrated.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا