ترغب بنشر مسار تعليمي؟ اضغط هنا

We provide, within the hydrokinetic model, a detailed investigation of kaon interferometry in $Pb+Pb$ collisions at LHC energy ($sqrt{s_{NN}} = 2.76$ TeV). Predictions are presented for 1D interferometry radii of $K^0_SK^0_S$ and $K^{pm}K^{pm}$ pairs as well as for 3D femtoscopy scales in out, side and long directions. The results are compared with existing pion interferometry radii. We also make predictions for full LHC energy.
The three-dimensional pion and kaon emission source functions are extracted from the HKM model simulations of the central Au+Au collisions at the top RHIC energy $sqrt{s_{NN}}=200$ GeV. The model describes well the experimental data, previously obtai ned by the PHENIX and STAR collaborations using the imaging technique. In particular, the HKM reproduces the non-Gaussian heavy tails of the source function in the pair transverse momentum (out) and beam (long) directions, observed in the pion case and practically absent for kaons. The role of the rescatterings and long-lived resonances decays in forming of the mentioned long range tails is investigated. The particle rescatterings contribution to the out tail seems to be dominating. The model calculations also show the substantial relative emission times between pions (with mean value 14.5 fm/c in LCMS), including those coming from resonance decays and rescatterings. The prediction is made for the source functions in the LHC Pb+Pb collisions at $sqrt{s_{NN}}=2.76$ TeV, which are still not extracted from the measured correlation functions.
A method for quantum corrections of Hanbury-Brown/Twiss (HBT) interferometric radii produced by semi-classical event generators is proposed. These corrections account for the basic indistinguishability and mutual coherence of closely located emitters caused by the uncertainty principle. A detailed analysis is presented for pion interferometry in $p+p$ collisions at LHC energy ($sqrt{s}=7$ TeV). A prediction is also presented of pion interferometric radii for $p+$Pb collisions at $sqrt{s}=5.02$ TeV. The hydrodynamic/hydrokinetic model with UrQMD cascade as afterburner is utilized for this aim. It is found that quantum corrections to the interferometry radii improve significantly the event generator results which typically overestimate the experimental radii of small systems. A successful description of the interferometry structure of $p+p$ collisions within the corrected hydrodynamic model requires the study of the problem of thermalization mechanism, still a fundamental issue for ultrarelativistic $A+A$ collisions, also for high multiplicity $p+p$ and $p+$Pb events.
The basic principles of the correlation femtoscopy, including its correspondence to the Hanbury Brown and Twiss intensity interferometry, are re-examined. The main subject of the paper is an analysis of the correlation femtoscopy when the source size is as small as the order of the uncertainty limit. It is about 1 fm for the current high energy experiments. Then the standard femtoscopy model of random sources is inapplicable. The uncertainty principle leads to the partial indistinguishability and coherence of closely located emitters that affect the observed femtoscopy scales. In thermal systems the role of corresponding coherent length is taken by the thermal de Broglie wavelength that also defines the size of a single emitter. The formalism of partially coherent phases in the amplitudes of closely located individual emitters is used for the quantitative analysis. The general approach is illustrated analytically for the case of the Gaussian approximation for emitting sources. A reduction of the interferometry radii and a suppression of the Bose-Einstein correlation functions for small sources due to the uncertainty principle are found. There is a positive correlation between the source size and the intercept of the correlation function. The peculiarities of the non-femtoscopic correlations caused by minijets and fluctuations of the initial states of the systems formed in $pp$ and $e^+e^-$ collisions are also analyzed. The factorization property for the contributions of femtoscopic and non-femtoscopic correlations into complete correlation function is observed in numerical calculations in a wide range of the model parameters.
A simultaneous description of hadronic yields; pion, kaon, and proton spectra; elliptic flows; and femtoscopy scales in the hydrokinetic model of A+A collisions is presented at different centralities for the top BNL Relativistic Heavy Ion Collider (R HIC) and CERN Large Hadron Collider (LHC) 2.76-TeV energies. The initial conditions are based on the Glauber Monte-Carlo simulations. When going from RHIC to LHC energy in the model, the only parameters changed are the normalization of the initial entropy defined by the number of all charged particles in most central collisions, contribution to entropy from binary collisions and baryonic chemical potential. The hydrokinetic model is used in its hybrid version (hHKM), which provides the correct match (at the isochronic hypersurface) of the decaying hadron matter evolution with hadronic ultrarelativistic quantum molecular dynamics cascade. The results are compared with the standard hybrid models where hydrodynamics and hadronic cascade are matching just at the non-space-like hypersurface of chemical freeze-out or on the isochronic hypersurface. The modification of the particle number ratios at LHC caused, in particular, by the particle annihilations at the afterburn stage is also analyzed.
A study of energy behavior of the pion spectra and interferometry scales is carried out for the top SPS, RHIC and for LHC energies within the hydrokinetic approach. The main mechanisms that lead to the paradoxical, at first sight, dependence of the i nterferometry scales with an energy growth, in particular, a decrease $R_{out}/R_{side}$ ratio, are exposed. The hydrokinetic predictions for the HBT radii at LHC energies are compared with the recent results of the ALICE experiment.
The hydrokinetic model is applied to restore the initial conditions and space-time picture of the matter evolution in central Au+Au collisions at the top RHIC energy. The analysis is based on the detailed reproduction of the pion and kaon momentum sp ectra and femtoscopic data in whole interval of the transverse momenta studied by both STAR and PHENIX collaborations. A good description of the pion and kaon transverse momentum spectra and interferometry radii is reached with both initial energy density profiles motivated by the Glauber and Color Glass Condensate (CGC) models, however, at different energy densities.
Two-particle angular correlation for charged particles emitted in Au+Au collisions at the center-of-mass of 200 MeV measured at RHIC energies revealed novel structures commonly referred to as a near-side ridge. The ridge phenomenon in relativistic A+ A collisions is rooted probably in the initial conditions of the thermal evolution of the system. In this study we analyze the evolution of the bumping transverse structure of the energy density distribution caused by fluctuations of the initial density distributions that could lead to the ridge structures. We suppose that at very initial stage of collisions the typical one-event structure of the initial energy density profile can be presented as the set of longitudinal tubes, which are boost-invariant in some space-rapidity region and are rather thin. These tubes have very high energy density comparing to smooth background density distribution. The transverse velocity and energy density profiles at different times of the evolution till the chemical freeze-out (at the temperature T=165 MeV) willbe reached by the system are calculated for sundry initial scenarios.
We describe RHIC pion data in central A+A collisions and make predictions for LHC based on hydro-kinetic model, describing continuous 4D particle emission, and initial conditions taken from Color Glass Condensate (CGC) model.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا