ترغب بنشر مسار تعليمي؟ اضغط هنا

67 - C.R. Gwinn 2015
We discovered fine-scale structure within the scattering disk of PSR B0329+54 in observations with the RadioAstron ground-space radio interferometer. Here, we describe this phenomenon, characterize it with averages and correlation functions, and inte rpret it as the result of decorrelation of the impulse-response function of interstellar scattering between the widely-separated antennas. This instrument included the 10-m Space Radio Telescope, the 110-m Green Bank Telescope, the 14x25-m Westerbork Synthesis Radio Telescope, and the 64-m Kalyazin Radio Telescope. The observations were performed at 324 MHz, on baselines of up to 235,000 km in November 2012 and January 2014. In the delay domain, on long baselines the interferometric visibility consists of many discrete spikes within a limited range of delays. On short baselines it consists of a sharp spike surrounded by lower spikes. The average envelope of correlations of the visibility function show two exponential scales, with characteristic delays of $tau_1=4.1pm 0.3 mu{rm s}$ and $tau_2=23pm 3 mu{rm s}$, indicating the presence of two scales of scattering in the interstellar medium. These two scales are present in the pulse-broadening function. The longer scale contains 0.38 times the scattered power of the shorter one. We suggest that the longer tail arises from highly-scattered paths, possibly from anisotropic scattering or from substructure at large angles.
80 - M. H. Cohen 2014
We study the kinematics of ridge lines on the pc-scale jet of the active galactic nucleus BL Lac. We show that the ridge lines display transverse patterns that move superluminally downstream, and that the moving patterns are analogous to waves on a w hip. Their apparent speeds $beta_mathrm{app}$ (units of $c$) range from 3.9 to 13.5, corresponding to $beta_mathrm{wave}^mathrm{gal}= 0.981 - 0.998$ in the galaxy frame. We show that the magnetic field in the jet is well-ordered with a strong transverse component, and assume that it is helical and that the transverse patterns are Alfven waves propagating downstream on the longitudinal component of the magnetic field. The wave-induced transverse speed of the jet is non-relativistic ($beta_mathrm{tr}^mathrm{gal} lesssim 0.09$). In 2010 the wave activity subsided and the jet then displayed a mild wiggle that had a complex oscillatory behaviour. The Alfven waves appear to be excited by changes in the position angle of the recollimation shock, in analogy to exciting a wave on a whip by shaking the handle. A simple model of the system with plasma sound speed $beta_mathrm{s}=0.3$ and apparent speed of a slow MHD wave $beta_mathrm{app,S}=4$ yields Lorentz factor of the beam $Gamma_mathrm{beam} sim 4.5$, pitch angle of the helix (in the beam frame) $alphasim 67^circ$, Alfven speed $beta_mathrm{A}sim 0.64$, and magnetosonic Mach number $M_mathrm{ms}sim 4.7$. This describes a plasma in which the magnetic field is dominant and in a rather tight helix, and Alfven waves are responsible for the moving transverse patterns.
272 - M. H. Cohen 2014
Parsec-scale VLBA images of BL Lac at 15 GHz show that the jet contains a permanent quasi-stationary emission feature 0.26 mas (0.34 pc projected) from the core, along with numerous moving features. In projection, the tracks of the moving features cl uster around an axis at position angle -166.6 deg that connects the core with the standing feature. The moving features appear to emanate from the standing feature in a manner strikingly similar to the results of numerical 2-D relativistic magneto-hydrodynamic (RMHD) simulations in which moving shocks are generated at a recollimation shock. Because of this, and the close analogy to the jet feature HST-1 in M87, we identify the standing feature in BL Lac as a recollimation shock. We assume that the magnetic field dominates the dynamics in the jet, and that the field is predominantly toroidal. From this we suggest that the moving features are compressions established by slow and fast mode magneto-acoustic MHD waves. We illustrate the situation with a simple model in which the slowest moving feature is a slow-mode wave, and the fastest feature is a fast-mode wave. In the model the beam has Lorentz factor about 3.5 in the frame of the host galaxy, and the fast mode wave has Lorentz factor about 1.6 in the frame of the beam. This gives a maximum apparent speed for the moving features 10c. In this model the Lorentz factor of the pattern in the galaxy frame is approximately 3 times larger than that of the beam itself.
74 - M. L. Lister 2013
We describe the parsec-scale kinematics of 200 AGN jets based on 15 GHz VLBA data obtained between 1994 Aug 31 and 2011 May 1. We present new VLBA 15 GHz images of these and 59 additional AGN from the MOJAVE and 2 cm Survey programs. Nearly all of th e 60 most heavily observed jets show significant changes in their innermost position angle over a 12 to 16 year interval, ranging from 10 deg to 150 deg on the sky, corresponding to intrinsic variations of ~0.5 deg to ~2 deg. The BL Lac jets show smaller variations than quasars. Roughly half of the heavily observed jets show systematic position angle trends with time, and 20 show indications of oscillatory behavior. The time spans of the data sets are too short compared to the fitted periods (5 to 12 y), however, to reliably establish periodicity. The rapid changes and large jumps in position angle seen in many cases suggest that the superluminal AGN jet features occupy only a portion of the entire jet cross section, and may be energized portions of thin instability structures within the jet. We have derived vector proper motions for 887 moving features in 200 jets having at least five VLBA epochs. For 557 well-sampled features, there are sufficient data to additionally study possible accelerations. We find that the moving features are generally non-ballistic, with 70% of the well-sampled features showing either significant accelerations or non-radial motions. Inward motions are rare (2% of all features), are slow (<0.1 mas per y), are more prevalent in BL Lac jets, and are typically found within 1 mas of the unresolved core feature. There is a general trend of increasing apparent speed with distance down the jet for both radio galaxies and BL Lac objects. In most jets, the speeds of the features cluster around a characteristic value, yet there is a considerable dispersion in the distribution. (abridged)
78 - N. S. Kardashev 2013
RadioAstron is a Russian space based radio telescope with a ten meter dish in a highly elliptical orbit with an eight to nine day period. RadioAstron works together with Earth based radio telescopes to give interferometer baselines extending up to 35 0,000 km, more than an order of magnitude improvement over what is possible from earth based very long baseline interferometry. Operating in four frequency bands, 1.3, 6, 18, and 92 cm, the corresponding resolutions are 7, 35, 100, and 500 microarcseconds respectively in the four wavelength bands.
The Russian Academy of Sciences and Federal Space Agency, together with the participation of many international organizations, worked toward the launch of the RadioAstron orbiting space observatory with its onboard 10-m reflector radio telescope from the Baikonur cosmodrome on July 18, 2011. Together with some of the largest ground-based radio telescopes and a set of stations for tracking, collecting, and reducing the data obtained, this space radio telescope forms a multi-antenna ground-space radio interferometer with extremely long baselines, making it possible for the first time to study various objects in the Universe with angular resolutions a million times better than is possible with the human eye. The project is targeted at systematic studies of compact radio-emitting sources and their dynamics. Objects to be studied include supermassive black holes, accretion disks, and relativistic jets in active galactic nuclei, stellar-mass black holes, neutron stars and hypothetical quark stars, regions of formation of stars and planetary systems in our and other galaxies, interplanetary and interstellar plasma, and the gravitational field of the Earth. The results of ground-based and inflight tests of the space radio telescope carried out in both autonomous and ground-space interferometric regimes are reported. The derived characteristics are in agreement with the main requirements of the project. The astrophysical science program has begun.
114 - M. L. Lister , M. Aller , H. Aller 2011
We investigate the Fermi LAT gamma-ray and 15 GHz VLBA radio properties of a joint gamma-ray- and radio-selected sample of AGNs obtained during the first 11 months of the Fermi mission (2008 Aug 4 - 2009 Jul 5). Our sample contains the brightest 173 AGNs in these bands above declination -30 deg. during this period, and thus probes the full range of gamma-ray loudness (gamma-ray to radio band luminosity ratio) in the bright blazar population. The latter quantity spans at least four orders of magnitude, reflecting a wide range of spectral energy distribution (SED) parameters in the bright blazar population. The BL Lac objects, however, display a linear correlation of increasing gamma-ray loudness with synchrotron SED peak frequency, suggesting a universal SED shape for objects of this class. The synchrotron self-Compton model is favored for the gamma-ray emission in these BL Lacs over external seed photon models, since the latter predict a dependence of Compton dominance on Doppler factor that would destroy any observed synchrotron SED peak - gamma-ray loudness correlation. The high-synchrotron peaked (HSP) BL Lac objects are distinguished by lower than average radio core brightness temperatures, and none display large radio modulation indices or high linear core polarization levels. No equivalent trends are seen for the flat-spectrum radio quasars (FSRQ) in our sample. Given the association of such properties with relativistic beaming, we suggest that the HSP BL Lacs have generally lower Doppler factors than the lower-synchrotron peaked BL Lacs or FSRQs in our sample.
284 - L. Petrov 2011
This paper presents accurate absolute positions from a 24 GHz Very Long Baseline Array (VLBA) search for compact extragalactic sources in an area where the density of known calibrators with precise coordinates is low. The goals were to identify addit ional sources suitable for use as phase calibrators for galactic sources, determine their precise positions, and produce radio images. In order to achieve these goals, we developed a new software package, PIMA, for determining group delays from wide-band data with much lower detection limit. With the use of PIMA we have detected 327 sources out of 487 targets observed in three 24 hour VLBA experiments. Among the 327 detected objects, 176 are within 10 degrees of the Galactic plane. This VGaPS catalogue of source positions, plots of correlated flux density versus projected baseline length, contour plots, as well as weighted CLEAN images and calibrated visibility data in FITS format, are available on the Web at http://astrogeo.org/vgaps. Approximately one half of objects from the 24 GHz catalogue were observed at dual band 8.6 GHz and 2.3 GHz experiments. Position differences at 24 GHz versus 8.6/2.3 GHz for all but two objects on average are strictly within reported uncertainties. We found that for two objects with complex structure positions at different frequencies correspond to different components of a source.
We discuss acceleration measurements for a large sample of extragalactic radio jets from the MOJAVE program which studies the parsec-scale jet structure and kinematics of a complete, flux-density-limited sample of Active Galactic Nuclei (AGN). Accele rations are measured from the apparent motion of individual jet features or components which may represent patterns in the jet flow. We find that significant accelerations are common both parallel and perpendicular to the observed component velocities. Parallel accelerations, representing changes in apparent speed, are generally larger than perpendicular acceleration that represent changes in apparent direction. The trend for larger parallel accelerations indicates that a significant fraction of these changes in apparent speed are due to changes in intrinsic speed of the component rather than changes in direction to the line of sight. We find an overall tendency for components with increasing apparent speed to be closer to the base of their jets than components with decreasing apparent speed. This suggests a link between the observed pattern motions and the underlying flow which, in some cases, may increase in speed close to the base and decrease in speed further out; however, common hydro-dynamical processes for propagating shocks may also play a role. About half of the components show non-radial motion, or a misalignment between the components structural position angle and its velocity direction, and these misalignments generally better align the component motion with the downstream emission. Perpendicular accelerations are closely linked with non-radial motion. When observed together, perpendicular accelerations are usually in the correct direction to have caused the observed misalignment.
80 - M. L. Lister 2009
We discuss the jet kinematics of a complete flux-density-limited sample of 135 radio-loud active galactic nuclei (AGN) resulting from a 13 year program to investigate the structure and evolution of parsec-scale jet phenomena. Our analysis is based on new 2 cm Very Long Baseline Array (VLBA) images obtained between 2002 and 2007, but includes our previously published observations made at the same wavelength, and is supplemented by VLBA archive data. In all, we have used 2424 images spanning the years 1994-2007 to study and determine the motions of 526 separate jet features in 127 jets. The data quality and temporal coverage (a median of 15 epochs per source) of this complete AGN jet sample represents a significant advance over previous kinematics surveys. In all but five AGNs, the jets appear one-sided, most likely the result of differential Doppler boosting. In general the observed motions are directed along the jet ridge line, outward from the optically thick core feature. We directly observe changes in speed and/or direction in one third of the well-sampled jet components in our survey. While there is some spread in the apparent speeds of separate features within an individual jet, the dispersion is about three times smaller than the overall dispersion of speeds among all jets. This supports the idea that there is a characteristic flow that describes each jet, which we have characterized by the fastest observed component speed. The observed maximum speed distribution is peaked at ~10c, with a tail that extends out to ~50c. This requires a distribution of intrinsic Lorentz factors in the parent population that range up to ~50. We also note the presence of some rare low-pattern speeds or even stationary features in otherwise rapidly flowing jets... (abridged)
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا