ترغب بنشر مسار تعليمي؟ اضغط هنا

338 - Z. K. Liu , B. Zhou , Z. J. Wang 2013
Three-dimensional (3D) topological Dirac semimetals (TDSs) represent a novel state of quantum matter that can be viewed as 3D graphene. In contrast to two-dimensional (2D) Dirac fermions in graphene or on the surface of 3D topological insulators, TDS s possess 3D Dirac fermions in the bulk. The TDS is also an important boundary state mediating numerous novel quantum states, such as topological insulators, Weyl semi-metals, Axion insulators and topological superconductors. By investigating the electronic structure of Na3Bi with angle resolved photoemission spectroscopy, we discovered 3D Dirac fermions with linear dispersions along all momentum directions for the first time. Furthermore, we demonstrated that the 3D Dirac fermions in Na3Bi were protected by the bulk crystal symmetry. Our results establish that Na3Bi is the first model system of 3D TDSs, which can also serve as an ideal platform for the systematic study of quantum phase transitions between rich novel topological quantum states.
Angle resolved photoemission spectroscopy (ARPES) studies were performed on two compounds (TlBiTe$_2$ and TlBiSe$_2$) from a recently proposed three dimensional topological insulator family in Thallium-based III-V-VI$_2$ ternary chalcogenides. For bo th materials, we show that the electronic band structures are in broad agreement with the $ab$ $initio$ calculations; by surveying over the entire surface Brillouin zone (BZ), we demonstrate that there is a single Dirac cone reside at the center of BZ, indicating its topological non-triviality. For TlBiSe$_2$, the observed Dirac point resides at the top of the bulk valance band, making it a large gap ($geq$200$meV$) topological insulator; while for TlBiTe$_2$, we found there exist a negative indirect gap between the bulk conduction band at $M$ point and the bulk valance band near $Gamma$, making it a semi-metal at proper doping. Interestingly, the unique band structures of TlBiTe$_2$ we observed further suggest TlBiTe$_2$ may be a candidate for topological superconductors.
We investigate the surface state of Bi$_2$Te$_3$ using angle resolved photoemission spectroscopy (ARPES) and transport measurements. By scanning over the entire Brillouin zone (BZ), we demonstrate that the surface state consists of a single non-degen erate Dirac cone centered at the $Gamma$ point. Furthermore, with appropriate hole (Sn) doping to counteract intrinsic n-type doping from vacancy and anti-site defects, the Fermi level can be tuned to intersect only the surface states, indicating a full energy gap for the bulk states, consistent with a carrier sign change near this doping in transport properties. Our experimental results establish for the first time that Bi$_2$Te$_3$ is a three dimensional topological insulator with a single Dirac cone on the surface, as predicted by a recent theory.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا