ترغب بنشر مسار تعليمي؟ اضغط هنا

A hybrid system that combines the advantages of a superconducting flux qubit and an electron spin ensemble in diamond is one of the promising devices to realize quantum information processing. Exploring the properties of the superconductor diamond sy stem is essential for the efficient use of this device. When we perform spectroscopy of this system, significant power broadening is observed. However, previous models to describe this system are known to be applicable only when the power broadening is negligible. Here, we construct a new approach to analyze this system with strong driving, and succeed to reproduce the spectrum with the power broadening. Our results provide an efficient way to analyze this hybrid system.
One of the promising systems to realize quantum computation is a hybrid system where a superconducting flux qubit plays a role of a quantum processor and the NV center ensemble is used as a quantum memory. We have theoretically and experimentally stu died the effect of magnetic fields on this hybrid system, and found that the lifetime of the vacuum Rabi oscillation is improved by applying a few mT magnetic field to the NV center ensemble. Here, we construct a theoretical model to reproduce the vacuum Rabi oscillations with/without magnetic fields applied to the NV centers, and we determine the reason why magnetic fields can affect the coherent properties of the NV center ensemble. From our theoretical analysis, we quantitatively show that the magnetic fields actually suppress the inhomogeneous broadening from the strain in the NV centers.
For quantum information processing, each physical system has different advantage for the implementation and so hybrid systems to benefit from several systems would be able to provide a promising approach. One of the common hybrid approach is to combi ne a superconducting qubit as a controllable qubit and the other quantum system with a long coherence time as a memory qubit. The superconducting qubit allows us to have an excellent controllability of the quantum states and the memory qubit is capable of storing the information for a long time. By tuning the energy splitting between the superconducting qubit and the memory qubit, it is believed that one can realize a selective coupling between them. However, we have shown that this approach has a fundamental drawback concerning energy leakage from the memory qubit. The detuned superconducting qubit is usually affected by severe decoherence, and this causes an incoherent energy relaxation from the memory qubit to the superconducting qubit via the imperfect decoupling. We have also found that this energy transport can be interpreted as an appearance of anti quantum Zeno effect induced by the fluctuation in the superconducting qubit. We also discuss a possible solution to avoid such energy relaxation process, which is feasible with existing technology.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا