ﻻ يوجد ملخص باللغة العربية
For quantum information processing, each physical system has different advantage for the implementation and so hybrid systems to benefit from several systems would be able to provide a promising approach. One of the common hybrid approach is to combine a superconducting qubit as a controllable qubit and the other quantum system with a long coherence time as a memory qubit. The superconducting qubit allows us to have an excellent controllability of the quantum states and the memory qubit is capable of storing the information for a long time. By tuning the energy splitting between the superconducting qubit and the memory qubit, it is believed that one can realize a selective coupling between them. However, we have shown that this approach has a fundamental drawback concerning energy leakage from the memory qubit. The detuned superconducting qubit is usually affected by severe decoherence, and this causes an incoherent energy relaxation from the memory qubit to the superconducting qubit via the imperfect decoupling. We have also found that this energy transport can be interpreted as an appearance of anti quantum Zeno effect induced by the fluctuation in the superconducting qubit. We also discuss a possible solution to avoid such energy relaxation process, which is feasible with existing technology.
We report the experimental realization of a hybrid quantum circuit combining a superconducting qubit and an ensemble of electronic spins. The qubit, of the transmon type, is coherently coupled to the spin ensemble consisting of nitrogen-vacancy (NV)
Superconducting qubits are a leading candidate for quantum computing but display temporal fluctuations in their energy relaxation times T1. This introduces instabilities in multi-qubit device performance. Furthermore, autocorrelation in these time fl
The interaction of photons and coherent quantum systems can be employed to detect electromagnetic radiation with remarkable sensitivity. We introduce a quantum radiometer based on the photon-induced-dephasing process of a superconducting qubit for se
We study thermal entanglement in a two-superconducting-qubit system in two cases, either identical or distinct. By calculating the concurrence of system, we find that the entangled degree of the system is greatly enhanced in the case of very low temp
We propose a quantum memory scheme to transfer and store the quantum state of a superconducting flux qubit (FQ) into the electron spin of a single nitrogen-vacancy (NV) center in diamond via yttrium iron garnet (YIG), a ferromagnet. Unlike an ensembl