ترغب بنشر مسار تعليمي؟ اضغط هنا

A method for construction of the multipartite Clauser-Horne-Shimony-Holt (CHSH) type Bell inequalities, for the case of local binary observables, is presented. The standard CHSH-type Bell inequalities can be obtained as special cases. A unified frame work to establish all kinds of CHSH-type Bell inequalities by increasing step by step the number of observers is given. As an application, compact Bell inequalities, for eight observers, involving just four correlation functions are proposed. They require much less experimental effort than standard methods and thus is experimentally friendly in multi-photon experiments.
A technique, which we call homogenization, is applied to transform CH-type Bell inequalities, which contain lower order correlations, into CHSH-type Bell inequalities, which are defined for highest order correlation functions. A homogenization leads to inequalities involving more settings, that is a choice of one more observable is possible for each party. We show that this technique preserves the tightness of Bell inequalities: a homogenization of a tight CH-type Bell inequality is still a tight CHSH-type Bell inequality. As an example we obtain $3times3times3$ CHSH-type Bell inequalities by homogenization of $2times 2times 2$ CH-type Bell inequalities derived by Sliwa in [Phys. Lett. A {bf 317}, 165 (2003)].
We construct a simple algorithm to generate any CHSH type Bell inequality involving a party with two local binary measurements from two CHSH type inequalities without this party. The algorithm readily generalizes to situations, where the additional o bserver uses three measurement settings. There, each inequality involving the additional party is constructed from three inequalities with this party excluded. With this generalization at hand, we construct and analyze new symmetric inequalities for four observers and three experimental settings per observer.
We describe a method of extending Bell inequalities from $n$ to $n+1$ parties and formulate sufficient conditions for our method to produce tight inequalities from tight inequalities. The method is non trivial in the sense that the inequalities produ ced by it, when applied to entangled quantum states may be violated stronger than the original inequalities. In other words, the method is capable of generating inequalities which are more powerfull indicators of non-classical correlations than the original inequalities.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا