ترغب بنشر مسار تعليمي؟ اضغط هنا

Theoretical predictions of the prompt atmospheric neutrino flux have large uncertainties associated with charm hadron production, by far the dominant source of prompt neutrinos in the atmosphere. The flux of cosmic rays, with its steeply falling ener gy spectrum, weights the forward production of charm in the evaluation of the atmospheric neutrino flux at high energies. The current LHCb experiment at CERN constrains charm production in kinematic regions relevant to the prompt atmospheric neutrino flux. The proposed Forward Physics Facility has additional capabilities to detect neutrino fluxes from forward charm production at the LHC. We discuss the implications of the current and planned experiments on the development of theoretical predictions of the high energy atmospheric neutrino flux.
We present a new calculation of the energy distribution of high-energy neutrinos from the decay of charm and bottom hadrons produced at the Large Hadron Collider (LHC). In the kinematical region of very forward rapidities, heavy-flavor production and decay is a source of tau neutrinos that leads to thousands of { charged-current} tau neutrino events in a 1 m long, 1 m radius lead neutrino detector at a distance of 480 m from the interaction region. In our computation, next-to-leading order QCD radiative corrections are accounted for in the production cross-sections. Non-perturbative intrinsic-$k_T$ effects are approximated by a simple phenomenological model introducing a Gaussian $k_T$-smearing of the parton distribution functions, which might also mimic perturbative effects due to multiple initial-state soft-gluon emissions. The transition from partonic to hadronic states is described by phenomenological fragmentation functions. To study the effect of various input parameters, theoretical predictions for $D_s^pm$ production are compared with LHCb data on double-differential cross-sections in transverse momentum and rapidity. The uncertainties related to the choice of the input parameter values, ultimately affecting the predictions of the tau neutrino event distributions, are discussed. We consider a 3+1 neutrino mixing scenario to illustrate the potential for a neutrino experiment to constrain the 3+1 parameter space using tau neutrinos and antineutrinos. We find large theoretical uncertainties in the predictions of the neutrino fluxes in the far-forward region. Untangling the effects of tau neutrino oscillations into sterile neutrinos and distinguishing a 3+1 scenario from the standard scenario with three active neutrino flavours, will be challenging due to the large theoretical uncertainties from QCD.
Sterile neutrinos with mass in the eV-scale and large mixings of order $theta_0simeq 0.1$ could explain some anomalies found in short-baseline neutrino oscillation data. Here, we revisit a neutrino portal scenario in which eV-scale sterile neutrinos have self-interactions via a new gauge vector boson $phi$. Their production in the early Universe via mixing with active neutrinos can be suppressed by the induced effective potential in the sterile sector. We study how different cosmological observations can constrain this model, in terms of the mass of the new gauge boson, $M_phi$, and its coupling to sterile neutrinos, $g_s$. Then, we explore how to probe part of the allowed parameter space of this particular model with future observations of the diffuse supernova neutrino background by the Hyper-Kamiokande and DUNE detectors. For $M_phi sim 5-10$~keV and $g_s sim 10^{-4}-10^{-2}$, as allowed by cosmological constraints, we find that interactions of diffuse supernova neutrinos with relic sterile neutrinos on their way to the Earth would result in significant dips in the neutrino spectrum which would produce unique features in the event spectra observed in these detectors.
We consider propagation of high energy earth-skimming taus produced in interactions of astrophysical tau neutrinos. For astrophysical tau neutrinos we take generic power-law flux, $E^{-2}$ and the cosmogenic flux initiated by the protons. We calculat e tau energy loss in several approaches, such as dipole models and the phenomenological approach in which parameterization of the $F_2$ is used. We evaluate the tau neutrino charged-current cross section using the same approaches for consistency. We find that uncertainty in the neutrino cross section and in the tau energy loss partially compensate giving very small theoretical uncertainty in the emerging tau flux for distances ranging from $2$ km to $100$ km and for the energy range between $10^6$ GeV and $10^{11}$ GeV, focusing on energies above $10^8$ GeV. When we consider uncertainties in the neutrino cross section, inelasticity in neutrino interactions and the tau energy loss, which are not correlated, i.e. they are not all calculated in the same approach, theoretical uncertainty ranges from about $30%$ and $60 %$ at $10^8$ GeV to about factors of 3.3 and 3.8 at $10^{11}$ GeV for the $E^{-2}$ flux and the cosmogenic flux, respectively, for the distance of 10 km rock. The spread in predictions significantly increases for much larger distances, e.g., $sim 1,000$ km. Most of the uncertainty comes from the treatment of photonuclear interactions of the tau in transit through large distances. We also consider Monte Carlo calculation of the tau propagation and we find that the result for the emerging tau flux is in agreement with the result obtained using analytic approach. Our results are relevant to several experiments that are looking for skimming astrophysical taus, such as the Pierre Auger Observatory, HAWC and Ashra. We evaluate the aperture for the Auger and discuss briefly application to the the other two experiments.
We evaluate the prompt atmospheric neutrino flux using the different QCD models for heavy quark production including the $b$ quark contribution. We include the nuclear correction and find it reduces the fluxes by $10 % - 50%$ according to the models. Our heavy quark results are compared with experimental data from RHIC, LHC and LHCb.
We evaluate the prompt atmospheric neutrino flux including nuclear correction and $B$ hadron contribution in the different frameworks: NLO perturbative QCD and dipole models. The nuclear effect is larger in the prompt neutrino flux than in the total charm production cross section, and it reduces the fluxes by $10% - 30%$ depending on the model. We also investigate the uncertainty using the QCD scales allowed by the charm cross section data from RHIC and LHC experiments.
We evaluate the prompt atmospheric neutrino flux at high energies using three different frameworks for calculating the heavy quark production cross section in QCD: NLO perturbative QCD, $k_T$ factorization including low-$x$ resummation, and the dipol e model including parton saturation. We use QCD parameters, the value for the charm quark mass and the range for the factorization and renormalization scales that provide the best description of the total charm cross section measured at fixed target experiments, at RHIC and at LHC. Using these parameters we calculate differential cross sections for charm and bottom production and compare with the latest data on forward charm meson production from LHCb at $7$ TeV and at $13$ TeV, finding good agreement with the data. In addition, we investigate the role of nuclear shadowing by including nuclear parton distribution functions (PDF) for the target air nucleus using two different nuclear PDF schemes. Depending on the scheme used, we find the reduction of the flux due to nuclear effects varies from $10%$ to $50 %$ at the highest energies. Finally, we compare our results with the IceCube limit on the prompt neutrino flux, which is already providing valuable information about some of the QCD models.
There is a growing interest for the search of new light gauge bosons. The small mass of a new boson can turn various kinds of low-energy experiments to a new discovery machine, depending on their couplings to the standard model particles. It is impor tant to understand the properties of each type of gauge boson and their current constraints for a given mass. While the dark photon (which couples to the electric charges) and the $U(1)_{B-L}$ gauge boson have been well studied in an extensive mass range, the $U(1)_L$ gauge boson has not been fully investigated yet. We consider the gauge boson of the $U(1)_L$ in a wide mass range $m_{Z} approx 0 - 10^{12} ~ev$ and investigate the constraints on its coupling from various experiments, discussing the similarities and differences from the dark photon and the $U(1)_{B-L}$ gauge boson.
106 - Choong Sun Kim 2014
One brief idea on the extended uncertainty relation and the dynamical quantization of space-time at the Planck scale is presented. The extended uncertainty relation could be a guiding principle toward the renormalizable quantum gravity. Cosmological constant in the Universe as a quantum effect is also roughly estimated.
Instead of starting from a theoretically motivated form of the color dipole cross section in the dipole picture of deep inelastic scattering, we start with a parametrization of the deep inelastic structure function for electromagnetic scattering with protons, and then extract the color dipole cross section. Using the parametrizations of $F_2(xi=x {rm or} W^2,Q^2)$ by Donnachie-Landshoff and Block et al., we find the dipole cross section from an approximate form of the presumed dipole cross section convoluted with the perturbative photon wave function for virtual photon splitting into a color dipole with massless quarks. The color dipole cross section determined this way reproduces the original structure function within about 10% for $0.1$ GeV$^2leq Q^2leq 10$ GeV$^2$. We discuss the large and small form of the dipole cross section and compare with other parameterizations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا