ﻻ يوجد ملخص باللغة العربية
We evaluate the prompt atmospheric neutrino flux at high energies using three different frameworks for calculating the heavy quark production cross section in QCD: NLO perturbative QCD, $k_T$ factorization including low-$x$ resummation, and the dipole model including parton saturation. We use QCD parameters, the value for the charm quark mass and the range for the factorization and renormalization scales that provide the best description of the total charm cross section measured at fixed target experiments, at RHIC and at LHC. Using these parameters we calculate differential cross sections for charm and bottom production and compare with the latest data on forward charm meson production from LHCb at $7$ TeV and at $13$ TeV, finding good agreement with the data. In addition, we investigate the role of nuclear shadowing by including nuclear parton distribution functions (PDF) for the target air nucleus using two different nuclear PDF schemes. Depending on the scheme used, we find the reduction of the flux due to nuclear effects varies from $10%$ to $50 %$ at the highest energies. Finally, we compare our results with the IceCube limit on the prompt neutrino flux, which is already providing valuable information about some of the QCD models.
We evaluate the prompt atmospheric neutrino flux using the different QCD models for heavy quark production including the $b$ quark contribution. We include the nuclear correction and find it reduces the fluxes by $10 % - 50%$ according to the models.
We evaluate the prompt atmospheric neutrino flux including nuclear correction and $B$ hadron contribution in the different frameworks: NLO perturbative QCD and dipole models. The nuclear effect is larger in the prompt neutrino flux than in the total
The fluxes of atmospheric muons and neutrinos are calculated by a three dimensional Monte Carlo simulation with the air shower code CORSIKA using the hadronic interaction models DPMJET, VENUS, GHEISHA, and UrQMD. For the simulation of low energy prim
Effects on atmospheric prompt neutrino fluxes of present uncertainties affecting the nucleon composition are studied by using the PROSA fit to parton distribution functions (PDFs). The PROSA fit extends the precision of the PDFs to low x, which is th
We calculate the atmospheric flux of prompt neutrinos, produced in decays of the charmed particles at energies beyond 1 TeV. Cross sections of the $D$-mesons and ${Lambda}^{+}_{c}$ baryons production in pA and $pi$A collisions are calculated in the p