ترغب بنشر مسار تعليمي؟ اضغط هنا

We apply the conformal bootstrap technique to study the $U(1)$ Dirac spin liquid (i.e. $N_f=4$ QED$_3$) and the newly proposed $N=7$ Stiefel liquid (i.e. a conjectured 3d non-Lagrangian CFT without supersymmetry). For the $N_f=4$ QED$_3$, we focus on the monopole operator and ($SU(4)$ adjoint) fermion bilinear operator. We bootstrap their single correlators as well as the mixed correlators between them. We first discuss the bootstrap kinks from single correlators. Some exponents of these bootstrap kinks are close to the expected values of QED$_3$, but we provide clear evidence that they should not be identified as the QED$_3$. We then provide rigorous numerical bounds for the Dirac spin liquid and the $N=7$ Stiefel liquid to be stable critical phases on the triangular and kagome lattice. For the triangular and kagome Dirac spin liquid, the rigorous lower bounds of the monopole operators scaling dimension are $1.046$ and $1.105$, respectively. These bounds are consistent with the latest Monte Carlo results.
86 - Yin-Chen He , Junchen Rong , 2021
We propose a roadmap for bootstrapping conformal field theories (CFTs) described by gauge theories in dimensions $d>2$. In particular, we provide a simple and workable answer to the question of how to detect the gauge group in the bootstrap calculati on. Our recipe is based on the notion of emph{decoupling operator}, which has a simple (gauge) group theoretical origin, and is reminiscent of the null operator of $2d$ Wess-Zumino-Witten CFTs in higher dimensions. Using the decoupling operator we can efficiently detect the rank (i.e. color number) of gauge groups, e.g., by imposing gap conditions in the CFT spectrum. We also discuss the physics of the equation of motion, which has interesting consequences in the CFT spectrum as well. As an application of our recipes, we study a prototypical critical gauge theory, namely the scalar QED which has a $U(1)$ gauge field interacting with critical bosons. We show that the scalar QED can be solved by conformal bootstrap, namely we have obtained its kinks and islands in both $d=3$ and $d=2+epsilon$ dimensions.
80 - Yin-Chen He , Junchen Rong , 2020
It is well established that the $O(N)$ Wilson-Fisher (WF) CFT sits at a kink of the numerical bounds from bootstrapping four point function of $O(N)$ vector. Moving away from the WF kinks, there indeed exists another family of kinks (dubbed non-WF ki nks) on the curve of $O(N)$ numerical bounds. Different from the $O(N)$ WF kinks that exist for arbitary $N$ in $2<d<4$ dimensions, the non-WF kinks exist in arbitrary dimensions but only for a large enough $N>N_c(d)$ in a given dimension $d$. In this paper we have achieved a thorough understanding for few special cases of these non-WF kinks. The first case is the $O(4)$ bootstrap in 2d, where the non-WF kink turns out to be the $SU(2)_1$ Wess-Zumino-Witten (WZW) model, and all the $SU(2)_{k>2}$ WZW models saturate the numerical bound on the left side of the kink. We further carry out dimensional continuation of the 2d $SU(2)_1$ kink towards the 3d $SO(5)$ deconfined phase transition. We find the kink disappears at around $d=2.7$ dimensions indicating the $SO(5)$ deconfined phase transition is weakly first order. The second interesting observation is, the $O(2)$ bootstrap bound does not show any kink in 2d ($N_c=2$), but is surprisingly saturated by the 2d free boson CFT (also called Luttinger liquid) all the way on the numerical curve. The last case is the $N=infty$ limit, where the non-WF kink sits at $(Delta_phi, Delta_T)=(d-1, 2d)$ in $d$ dimensions. We manage to write down its analytical four point function in arbitrary dimensions, which equals to the subtraction of correlation functions of a free fermion theory and generalized free theory. An important feature of this solution is the existence of a full tower of conserved higher spin current. We speculate that a new family of CFTs will emerge at non-WF kinks for finite $N$, in a similar fashion as $O(N)$ WF CFTs originating from free boson at $N=infty$.
We study the spin liquid candidate of the spin-$1/2$ $J_1$-$J_2$ Heisenberg antiferromagnet on the triangular lattice by means of density matrix renormalization group (DMRG) simulations. By applying an external Aharonov-Bohm flux insertion in an infi nitely long cylinder, we find unambiguous evidence for gapless $U(1)$ Dirac spin liquid behavior. The flux insertion overcomes the finite size restriction for energy gaps and clearly shows gapless behavior at the expected wave-vectors. Using the DMRG transfer matrix, the low-lying excitation spectrum can be extracted, which shows characteristic Dirac cone structures of both spinon-bilinear and monopole excitations. Finally, we confirm that the entanglement entropy follows the predicted universal response under the flux insertion.
Quantum magnets provide the simplest example of strongly interacting quantum matter, yet they continue to resist a comprehensive understanding above one spatial dimension (1D). In 1D, a key ingredient to progress is Luttinger liquid theory which prov ides a unified description. Here we explore a promising analogous framework in two dimensions, the Dirac spin liquid (DSL), which can be constructed on several different lattices. The DSL is a version of Quantum Electrodynamics ( QED$_3$) with four flavors of Dirac fermions coupled to photons. Importantly, its excitations also include magnetic monopoles that drive confinement. By calculating the complete action of symmetries on monopoles on the square, honeycomb, triangular and kagom`e lattices, we answer previously open key questions. We find that the stability of the DSL is enhanced on the triangular and kagom`e lattices as compared to the bipartite (square and honeycomb) lattices. We obtain the universal signatures of the DSL on the triangular and kagom`e lattices, including those that result from monopole excitations, which serve as a guide to numerics and to experiments on existing materials. Interestingly, the familiar 120 degree magnetic orders on these lattices can be obtained from monopole proliferation. Even when unstable, the Dirac spin liquid unifies multiple ordered states which could help organize the plethora of phases observed in strongly correlated two-dimensional materials.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا