ترغب بنشر مسار تعليمي؟ اضغط هنا

Motivated by recent experiments on ABC-stacked rhombohedral trilayer graphene (RTG) which observed spin-valley symmetry-breaking and superconductivity, we study instabilities of the RTG metallic state to symmetry breaking orders. We find that interac tions select the inter-valley coherent order (IVC) as the preferred ordering channel over a wide range, whose theoretically determined phase boundaries agree well with experiments on both the hole and electron doped sides. The Fermi surfaces near van Hove singularities admit partial nesting between valleys, which promotes both inter-valley superconductivity and IVC fluctuations. We investigate the interplay between these fluctuations and the Hunds (intervalley spin) interaction using a renormalization group approach. For antiferromagnetic Hunds coupling, intervalley pairing appears in the spin-singlet channel with enhanced $T_c$, that scales with the dimensionless coupling $g$ as $T_csimexp(-1/sqrt{g})$ , compared to the standard $exp(-1/g)$ scaling. In its simplest form, this scenario assumes a sign change in the Hunds coupling on increasing hole doping. On the other hand, the calculation incorporates breaking of the independent spin rotations between valleys from the start, and strongly selects spin singlet over spin triplet pairing, and naturally occurs in proximity to the IVC, consistent with observations.
We study the time evolution of quantum entanglement for a specific class of quantum dynamics, namely the locally scrambled quantum dynamics, where each step of the unitary evolution is drawn from a random ensemble that is invariant under local (on-si te) basis transformations. In this case, the average entanglement entropy follows Markovian dynamics that the entanglement property of the future state can be predicted solely based on the entanglement properties of the current state and the unitary operator at each step. We introduce the entanglement feature formulation to concisely organize the entanglement entropies over all subsystems into a many-body wave function, which allows us to describe the entanglement dynamics using an imaginary-time Schrodinger equation, such that various tools developed in quantum many-body physics can be applied. The framework enables us to investigate a variety of random quantum dynamics beyond Haar random circuits and Brownian circuits. We perform numerical simulations for these models and demonstrate the validity and prediction power of the entanglement feature approach.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا