ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-centrosymmetric transition metal monopnictides, including TaAs, TaP, NbAs, and NbP, are emergent topological Weyl semimetals (WSMs) hosting exotic relativistic Weyl fermions. In this letter, we elucidate the physical origin of the unprecedented c harge carrier mobility of NbP, which can reach $1times10^{7}$ cm $^{2}$V$^{-1}$s$^{-1}$ at 1.5 K. Angle- and temperature-dependent quantum oscillations, supported by density function theory calculations, reveal that NbP has the coexistence of p- and n-type WSM pockets in the $k_{z}$=1.16$pi$/c plane (W1-WSM) and in the $k_{z}$=0 plane near the high symmetry points $Sigma$ (W2-WSM), respectively. Uniquely, each W2-WSM pocket forms a large dumbbell-shaped Fermi surface (FS) enclosing two neighboring Weyl nodes with the opposite chirality. The magneto-transport in NbP is dominated by these highly anisotropic W2-WSM pockets, in which Weyl fermions are well protected from defect backscattering by real spin conservation associated to the chiral nodes. However, with a minimal doping of $sim$1% Cr, the mobility of NbP is degraded by more than two order of magnitude, due to the invalid of helicity protection to magnetic impurities. Helicity protected Weyl fermion transport is also manifested in chiral anomaly induced negative magnetoresistance, controlled by the W1-WSM states. In the quantum regime below 10 K, the intervalley scattering time by impurities becomes a large constant, producing the sharp and nearly identical conductivity enhancement at low magnetic field.
Preparing graphene and its derivatives on functional substrates may open enormous opportunities for exploring the intrinsic electronic properties and new functionalities of graphene. However, efforts in replacing SiO$_{2}$ have been greatly hampered by a very low sample yield of the exfoliation and related transferring methods. Here, we report a new route in exploring new graphene physics and functionalities by transferring large-scale chemical vapor deposition single-layer and bilayer graphene to functional substrates. Using ferroelectric Pb(Zr$_{0.3}$Ti$_{0.7}$)O$_{3}$ (PZT), we demonstrate ultra-low voltage operation of graphene field effect transistors within $pm1$ V with maximum doping exceeding $10^{13},mathrm{cm^{-2}}$ and on-off ratios larger than 10 times. After polarizing PZT, switching of graphene field effect transistors are characterized by pronounced resistance hysteresis, suitable for ultra-fast non-volatile electronics.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا