ترغب بنشر مسار تعليمي؟ اضغط هنا

97 - C. Cheng , Y. B. Gao 2013
When the nonlinearity of nanomechanical resonator is not negligible, the quantum decoherence of charge qubit is studied analytically. Using nonlinear Jaynes-Cummings model, one explores the possibility of being quantum data bus for nonlinear nanomech anical resonator, the nonlinearity destroys the dynamical quantum information-storage and maintains the revival of quantum coherence of charge qubit. With the calculation of decoherence factor, we demonstrate the influence of the nonlinearity of nanomechanical resonator on engineered decoherence of charge qubit.
90 - X. Xiao , Y. B. Gao 2012
Starting from the formal solution to the Heisenberg equation, we revisit an universal model for a quantum open system with a harmonic oscillator linearly coupled to a boson bath. The analysis of the decay process for a Fock state and a coherent state demonstrate that this method is very useful in dealing with the problems in decay process of the open system. For finite temperature, the calculations of the reduced density matrix and the mean excitation number for the open system show that an initial coherent state will evolve into a temperature-dependant coherent state after tracing over the bath variables. Also in short-time limit, a temperature-dependant effective Hamiltonian for the open system characterizes the decay process of the open system.
64 - Y. B. Gao , S. Yang , Yu-xi Liu 2009
We propose and study an intrinsic probing approach, without introducing any external detector, to mimic cavity QED effects in a qubit-nanomechanical resonator system. This metallic nanomechanical resonator can act as an intrinsic detector when a weak driving current passes through it. The nanomechanical resonator acts as both the cavity and the detector. A cavity QED-like effect is demonstrated by the correlation spectrum of the electromotive force between the two ends of the nanomechanical resonator. Using the quantum regression theorem and perturbation theory, we analytically calculate the correlation spectrum. In the weak driving limit, we study the effect on the vacuum Rabi splitting of both the strength of the driving as well as the frequency-detuning between the charge qubit and the nanomechanical resonator. Numerical calculations confirm the validity of our intrinsic probing approach.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا